【HDU4947】GCD Array (莫比乌斯反演+树状数组)
BUPT2017 wintertraining(15) #5H
题意
有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\)增加v。第2种为2 x,查询\(\sum_{i=1}^x a_i\)。
数据范围:\(1\le n,d,v\le2\cdot 10^5,1\le x\le l\)
题解
设\(f_i\)满足\(a_i=\sum_{d|i} f_d\),用树状数组存储\(f_i\)的前缀和。
根据莫比乌斯函数(关于莫比乌斯反演可以看这篇论文:贾志鹏线性筛法与积性函数)的性质,我们知道\(\sum_{d|n}\mu(d)=[n=1]\),(这个d和上面的d不是同一个,下面换为p表示) 因此
于是对于给定的n和d,\(\frac n d\)的因子p的d倍就是符合条件的下标x的一个因子。
莫比乌斯反演可得:
\(f(n)=\sum_{d|n}\mu(\frac n d)a(n)\)
因此\(f_{pd}=\sum \mu(p)a(pd)\),于是对于1操作,我们只要给\(f_{pd}\)加上\(v\cdot \mu (p)\)即可。
2操作,是对\(a_i\)求和:
对于固定的d来说,1~x内\(f_d\)要加\(\lfloor \frac x d\rfloor\)次。再分块加速一下,也就是对于\(\lfloor\frac x d\rfloor\)相同的d,把\(f_d\)区间和求出来再乘上\(\lfloor\frac x d\rfloor\),设这个区间是[d1,d2],那么d2=x/(x/d1) (整除),为什么呢?因为d2是满足\(\frac x d \ge \lfloor \frac x {d1}\rfloor=k\)的最大的整数d,那么\(x\ge d2\cdot k\),所以\(\frac x k \ge d2\),也就是d2=\(\lfloor\frac x k\rfloor\)。
这题的时间复杂度:
预处理出1~N的所有因子,\(O(n\sqrt n)\)。
计算莫比乌斯函数,\(O(n)\)。
1操作,因子有\(\sqrt n\)个,增加是\(O(\log n)\),总的是\(O(m\sqrt n \log n)\)。
2操作,查询\(O(log n)\),分块\(O(\sqrt n)\),也是\(O(m\sqrt n \log n)\)。
总的就是\(O(m\sqrt n \log n)\)
官方题解:
代码
#include<cstdio>
#include<cstring>
#include<vector>
#define ll long long
#define N 200005
using namespace std;
int miu[N],prime[N],cnt;
ll sum[N],last,lasttemp,temp;
vector<int>fac[N];
bool check[N];
ll ans;
ll getsum(int x){
ll ans=0;
for(;x;x-=x&-x)ans+=sum[x];
return ans;
}
void add(int x,int v){
for(;x<N;x+=x&-x)sum[x]+=v;
}
void Mobius(){
miu[1]=1;
for(int i=2;i<N;i++){
if(!check[i]){
prime[cnt++]=i;
miu[i]=-1;
}
for(int j=0;j<cnt;j++){
if(i*prime[j]>N)break;
check[i*prime[j]]=1;
if(i%prime[j])miu[i*prime[j]]=-miu[i];
else break;
}
}
}
int main(){
int l,m,cas=0;
Mobius();
for(int i=1;i<N;i++)
for(int j=i;j<N;j+=i)
fac[j].push_back(i);
while(scanf("%d%d",&l,&m),l,m){
printf("Case #%d:\n",++cas);
memset(sum,0,sizeof sum);
while(m--){
int n,d,v,x;
scanf("%d",&n);
if(n==1){
scanf("%d%d%d",&n,&d,&v);
if(n%d)continue;
n/=d;
for(int i=0;i<fac[n].size();i++){
x=fac[n][i];
add(x*d,miu[x]*v);
}
}else{
scanf("%d",&n);
ans=temp=0;
for(int i=1;i<=n;i=last+1){
last=n/(n/i);
lasttemp=temp;
temp=getsum(last);
ans+=n/i*(temp-lasttemp);
}
printf("%lld\n",ans);
}
}
}
}
待看的文章:读贾志鹏线性筛有感 (莫比乌斯函数的应用)
┆凉┆暖┆降┆等┆幸┆我┆我┆里┆将┆ ┆可┆有┆谦┆戮┆那┆ ┆大┆始┆ ┆然┆
┆薄┆一┆临┆你┆的┆还┆没┆ ┆来┆ ┆是┆来┆逊┆没┆些┆ ┆雁┆终┆ ┆而┆
┆ ┆暖┆ ┆如┆地┆站┆有┆ ┆也┆ ┆我┆ ┆的┆有┆精┆ ┆也┆没┆ ┆你┆
┆ ┆这┆ ┆试┆方┆在┆逃┆ ┆会┆ ┆在┆ ┆清┆来┆准┆ ┆没┆有┆ ┆没┆
┆ ┆生┆ ┆探┆ ┆最┆避┆ ┆在┆ ┆这┆ ┆晨┆ ┆的┆ ┆有┆来┆ ┆有┆
┆ ┆之┆ ┆般┆ ┆不┆ ┆ ┆这┆ ┆里┆ ┆没┆ ┆杀┆ ┆来┆ ┆ ┆来┆