洛谷SP22343 NORMA2 - Norma(分治,前缀和)

洛谷题目传送门

这题推式子恶心。。。。。

考虑分治,每次统计跨过\(mid\)的所有区间的答案和。\(i\)\(mid-1\)\(l\)枚举,统计以\(i\)为左端点的所有区间。

我们先维护好\([i,mid]\)区间内最小值\(mn\)和最大值\(mx\)。我们可以想到,对于某一个左端点,它的右端点\(j\)在一定的范围内,最小值和最大值都不会变。这里就看到一些可以重复利用并快速计算的信息了。

维护两个指针\(p,q\),分别表示\([mid+1,r]\)内元素值第一个小于\(mn/\)大于\(mx\)的位置,那么\(\sum\limits_{j=mid+1}^rans[i,j]\)就可以分成三类讨论。暂时假设\(p<q\)

\(j\in[mid+1,p-1]\)时,区间的最值不变,都是\(mn,mx\),直接高斯求和

\[ans\leftarrow mn\cdot mx\sum\limits_{j=mid+1}^{p-1}j-i+1 \]

\(j\in[p,q-1]\)时,区间最大值不变,但最小值取的是\([mid+1,j]\)里的了。预处理\(mid+1\)\(r\)的前缀最小值\(min_j\),同时记录\(min_j\)\(min_j\cdot j\)的前缀和(\(p\ge q\)同理)

\[ans\leftarrow mx\sum\limits_{j=p}^{q-1}min_j(j-i+1) \]

\[ans\leftarrow mx\sum\limits_{j=p}^{q-1}min_j\cdot j+mx(1-i)\sum\limits_{j=p}^{q-1}min_j \]

\(j\in[q,r]\)时,最值和\(mn,mx\)无关了,记录\(min_jmax_j\)\(min_jmax_j\cdot j\)的前缀和

\[ans\leftarrow \sum\limits_{j=q}^rmin_jmax_j(j-i+1) \]

\[ans\leftarrow \sum\limits_{j=q}^rmin_jmax_j\cdot j+(1-i)\sum\limits_{j=q}^rmin_jmax_j \]

容易发现\(mn,mx,p,q\)都是单调移动的,那么就大功告成啦!

#include<bits/stdc++.h>
#define LL long long
#define RG register
#define R RG LL//常数大也无所谓了
#define G if(++ip==ie)fread(ip=buf,1,N,stdin)
#define A(V) (ans+=V)%=YL
using namespace std;
const LL N=1<<19,YL=1e9;
char buf[N],*ie=buf+N,*ip=ie-1;
LL ans,a[N],mns[N],mxs[N],mnj[N],mxj[N],mms[N],mmj[N];
inline LL in(){
    G;while(*ip<'-')G;
    R x=*ip&15;G;
    while(*ip>'-'){x*=10;x+=*ip&15;G;}
    return x;
}
inline LL S(R l,R r){//高斯求和
    return (l+r)*(r-l+1)/2%YL;
}
void solve(R l,R r){
    if(l==r){A(a[l]*a[l]);return;}
    R m=(l+r)>>1,i,j,p,q,mn=YL,mx=0;
    solve(l,m);solve(m+1,r);
    mns[m]=mxs[m]=mnj[m]=mxj[m]=mms[m]=mmj[m]=0;
    for(j=m+1;j<=r;++j){//预处理,变量名不解释
        mn=min(mn,a[j]);mx=max(mx,a[j]);
        mns[j]=(mns[j-1]+mn)%YL;
        mxs[j]=(mxs[j-1]+mx)%YL;
        mnj[j]=(mnj[j-1]+mn*j)%YL;
        mxj[j]=(mxj[j-1]+mx*j)%YL;
        mms[j]=(mms[j-1]+mn*mx)%YL;
        mmj[j]=(mmj[j-1]+mn*mx%YL*j)%YL;
    }
    mn=YL;mx=0;
    for(p=q=m+1,i=m;i>=l;--i){//计算答案
        mn=min(mn,a[i]);mx=max(mx,a[i]);
        while(p<=r&&mn<a[p])++p;//单调移动
        while(q<=r&&mx>a[q])++q;
        if(p<q){
            A(mn*mx%YL*S(m-i+2,p-i));//注意做减法的都要加一下模数
            A(mx*(mnj[q-1]-mnj[p-1]+YL)+mx*(mns[q-1]-mns[p-1]+YL)%YL*(1-i+YL));
            A(mmj[r]-mmj[q-1]+(mms[r]-mms[q-1]+YL)*(1-i+YL));
        }
        else{
            A(mn*mx%YL*S(m-i+2,q-i));
            A(mn*(mxj[p-1]-mxj[q-1]+YL)+mn*(mxs[p-1]-mxs[q-1]+YL)%YL*(1-i+YL));
            A(mmj[r]-mmj[p-1]+(mms[r]-mms[p-1]+YL)*(1-i+YL));
        }
    }
}
int main(){
    R n=in();
    for(R i=1;i<=n;++i)a[i]=in();
    solve(1,n);
    printf("%lld\n",ans);
    return 0;
}
posted @ 2018-09-27 19:11  Flash_Hu  阅读(655)  评论(0编辑  收藏  举报