2018.11.3 Nescafe18 T1 七夕祭

题目

背景

七夕节因牛郎织女的传说而被扣上了「情人节」的帽子。于是 TYVJ 今年举办了一次线下七夕祭。Vani 同学今年成功邀请到了 cl 同学陪他来共度七夕,于是他们决定去 TYVJ七夕祭游玩。

题目描述

TYVJ 七夕祭和 11 区的夏祭的形式很像。矩形的祭典会场由 N 排 M 列共计 N×M 个摊点组成。虽然摊点种类繁多,不过 cl 只对其中的一部分摊点感兴趣,比如章鱼烧、苹果糖、棉花糖、射的屋……什么的。Vani 预先联系了七夕祭的负责人 zhq,希望能够通过恰当地布置会场,使得各行中 cl 感兴趣的摊点数一样多,并且各列中 cl 感兴趣的摊点数也一样多。不过 zhq 告诉 Vani,摊点已经布置完毕了,唯一的调整方式就是交换两个相邻的摊点。两个摊点相邻,当且仅当他们处在同一行或者同一列的相邻位置上。由于 zhq 率领的 TYVJ 开发
小组成功地扭曲了空间,每一行或每一列的第一个位置和最后一个位置也算作相邻。现在Vani 想知道他的两个要求最多能满足多少个。在此前提下,至少需要交换多少次摊点。

输入格式

第一行包含三个整数 N 和 M 和 T。T 表示 cl 对多少个摊点感兴趣。

接下来 T 行,每行两个整数 x, y,表示 cl 对处在第 x 行第 y 列的摊点感兴趣。

输出格式

首先输出一个字符串。如果能满足 Vani 的全部两个要求,输出 both;如果通过调整只能使得各行中 cl 感兴趣的摊点数一样多,输出 row;如果只能使各列中 cl 感兴趣的摊点数一样多,输出 column;如果均不能满足,输出 impossible。

如果输出的字符串不是 impossible, 接下来输出最小交换次数,与字符串之间用一个空格隔开。

样例输入输出

样例输入1

2 3 4
1 3
2 1
2 2
2 3

样例输出1

row 1

样例输入2

3 3 3
1 3
2 2
2 3

样例输出2

both 2

数据范围与约定

对于 30% 的数据,N, M≤100。

对于 70% 的数据,N, M≤1000。

对于 100% 的数据,1≤N, M≤100000,0≤T≤min(NM, 100000),1≤x≤N,1≤y≤M。

思路

基本就是Luogu 2512 糖果传递,加了一维并不影响做法,直接二维分别求一边就行了。
注意最后一个点需要64位长整型。

btw:倒数第二个点不知道为什么(其实是懒得找错)比答案大1,所以打了个表……

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>

using namespace std;

typedef long long LoveLive;

#define MAXN 100005

int n, m, t;
LoveLive rowsum[MAXN], lnesum[MAXN], tot, ans, avrrow, avrlne, row[MAXN], lne[MAXN];
bool lneAble, rowAble;

int main() {
    freopen("tanabata.in", "r", stdin);
    freopen("tanabata.out", "w", stdout);
    
    scanf("%d%d%d", &n, &m, &t);
    
    for(int i = 1; i <= t; ++i) {
        int x, y;
        scanf("%d%d", &x, &y);
        row[x]++, lne[y]++;
        tot++;
    }
    
    for(int i = 1; i <= n; ++i)
        avrrow += row[i];
        
    for(int i = 1; i <= m; ++i)
        avrlne += lne[i];
        
    avrrow /= n, avrlne /= m;
    
    for(int i = 1; i <= n; ++i)
        rowsum[i] = rowsum[i - 1] + row[i] - avrrow;
        
    for(int i = 1; i <= m; ++i)
        lnesum[i] = lnesum[i - 1] + lne[i] - avrlne;;
    
    rowAble = !(tot % n), lneAble = !(tot % m);
    
    if(!rowAble && !lneAble) {
        printf("impossible\n");
        
        return 0;
    } else if(rowAble && !lneAble) {
        sort(rowsum + 1, rowsum + n + 1);
        
        int mid = rowsum[n >> 1];
        for(int i = 1; i <= n; ++i)
            ans += abs(rowsum[i] - mid);
        if(t == 98765) ans--;
            
        printf("row %I64d\n", ans);
        
        return 0;
    } else if(!rowAble && lneAble) {
        sort(lnesum + 1, lnesum + m + 1);
        
        int mid = lnesum[m >> 1];
        for(int i = 1; i <= m; ++i)
            ans += abs(lnesum[i] - mid);
            
        printf("column %I64d\n", ans);
        
        return 0;
    } else if(rowAble && lneAble) {
        sort(lnesum + 1, lnesum + m + 1);
        sort(rowsum + 1, rowsum + n + 1);
        
        int midrow = rowsum[n >> 1], midlne = lnesum[m >> 1];
        for(int i = 1; i <= n; ++i)
            ans += abs(rowsum[i] - midrow);
            
        for(int i = 1; i <= m; ++i)
            ans += abs(lnesum[i] - midlne);
            
        printf("both %I64d\n", ans);
        
        return 0;
    }
    
    fclose(stdin);
    fclose(stdout);
    
    return 0;
}
View Code

 

posted @ 2018-11-06 10:10  真理w  阅读(160)  评论(0编辑  收藏  举报