Evanyou Blog 彩带

P4052 [JSOI2007]文本生成器

题目描述

JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版。

该软件可以随机生成一些文章―――总是生成一篇长度固定且完全随机的文章—— 也就是说,生成的文章中每个字节都是完全随机的。如果一篇文章中至少包含使用者们了解的一个单词,那么我们说这篇文章是可读的(我们称文章a包含单词b,当且仅当单词b是文章a的子串)。但是,即使按照这样的标准,使用者现在使用的GW文本生成器v6版所生成的文章也是几乎完全不可读的?。ZYX需要指出GW文本生成器 v6

生成的所有文本中可读文本的数量,以便能够成功获得v7更新版。你能帮助吗?

输入输出格式

输入格式:

输入文件的第一行包含两个正整数,分别是使用者了解的单词总数N (<= 60),GW文本生成器 v6生成的文本固定长度M;以下N行,每一行包含一个使用者了解的单词。这里所有单词及文本的长度不会超过100,并且只可能包含英文大写字母A..Z

输出格式:

一个整数,表示可能的文章总数。只需要知道结果模10007的值。

输入输出样例

输入样例#1: 
2 2
A
B
输出样例#1: 
100

 

Solution:

  本题AC自动机+dp。

  首先如果直接计算答案,需要用到容斥,情况很多实现复杂。考虑到长度为$M$的只含$26$个大写字母的字符串只有$26^M$种情况,我们只需要从所有情况中减去不合法的情况就行了。

  那么对于所有不合法的情况,显然就是要使每个单词不是当前串的子串,于是将单词构建出AC自动机,不合法的串在trie树中查询时只要经过节点的所有的失配边都不是单词结尾就行了,所以在建失配边时顺带递推出在$p$节点是否会匹配到一个单词(只需$end[p]|=end[fail[p]]$就好了)。

  然后由于tire建树时深度和节点数都是单调不下降的,定义状态$f[i][j]$表示长度为$i$当前在$j$节点的不合法方案数,那么不难得到状态转移方程:$IF\;end[trie[j][k]]=0,\;f[i][trie[j][k]]+=f[i-1][j]$,最后不合法的情况个数$sum=\sum\limits_{i=0}^{i\leq cnt}{f[m][i]}$,也就是在各节点结束的长度为$m$的不合法串个数和,最后答案只要用$26^m-sum$就好了(记得中间的$+、\times$都要取模)。

代码:

 

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=60005,mod=10007;
int trie[N][26],cnt,end[N],fail[N];
int n,m,f[105][N],tot=1,ans;
char s[N];

il void insert(char *s){
    int len=strlen(s),p=0,x;
    For(i,0,len-1){
        x=s[i]-'A';
        if(!trie[p][x])trie[p][x]=++cnt;
        p=trie[p][x];
    }
    end[p]++;
}

il void bfs(){
    queue<int>q;
    For(i,0,25) if(trie[0][i]) fail[trie[0][i]]=0,q.push(trie[0][i]);
    while(!q.empty()){
        int u=q.front();q.pop();
        For(i,0,25){
            int v=trie[u][i];
            if(v) fail[v]=trie[fail[u]][i],end[v]|=end[fail[v]],q.push(v);
            else trie[u][i]=trie[fail[u]][i];
        }
    }
}

il void solve(){
    scanf("%d%d",&n,&m);
    For(i,1,n) scanf("%s",s),insert(s);
    bfs();
    f[0][0]=1;
    For(i,1,m) For(j,0,cnt) {
        if(!f[i-1][j])continue;
        For(k,0,25) if(!end[trie[j][k]]) f[i][trie[j][k]]=(f[i][trie[j][k]]+f[i-1][j])%mod;
    }
    For(i,1,m) tot=(tot*26)%mod;
    For(i,0,cnt) ans=(ans+f[m][i])%mod;
    cout<<(tot-ans+mod)%mod;
}

int main(){
    solve();
    return 0;
}

 

posted @ 2018-08-13 20:05  five20  阅读(207)  评论(0编辑  收藏  举报
Live2D