Evanyou Blog 彩带

P4316 绿豆蛙的归宿

题意翻译

「Poetize3」

题目背景

随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿。

题目描述

给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出发能够到达所有的点,所有的点也都能够到达终点。绿豆蛙从起点出发,走向终点。 到达每一个顶点时,如果有K条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K 。 现在绿豆蛙想知道,从起点走到终点的所经过的路径总长度期望是多少?

输入输出格式

输入格式:

 

第一行: 两个整数 N M,代表图中有N个点、M条边 第二行到第 1+M 行: 每行3个整数 a b c,代表从a到b有一条长度为c的有向边

 

输出格式:

 

从起点到终点路径总长度的期望值,四舍五入保留两位小数。

 

输入输出样例

输入样例#1: 
4 4 
1 2 1 
1 3 2 
2 3 3 
3 4 4
输出样例#1: 
7.00

说明

对于20%的数据 N<=100

对于40%的数据 N<=1000

对于60%的数据 N<=10000

对于100%的数据 N<=100000,M<=2*N

 

Solution:

  设$f[i]$表示$i\rightarrow n$的期望距离,那么$f[u]=\frac{\sum\limits_{i=1}^{i\leq k}{(f[v_i]+w[u][v])}}{k}$,于是我们正着不方便求那就反向嘛!反向建图后就是一个简单的DAG递推了,拓扑排序一下就好了。

代码:

 

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=200005;
int n,m,to[N],net[N],w[N],h[N],cnt,rd[N],deg[N];
double f[N];
queue<int>q;

il int gi(){
    int a=0;char x=getchar();
    while(x<'0'||x>'9')x=getchar();
    while(x>='0'&&x<='9')a=(a<<3)+(a<<1)+x-48,x=getchar();
    return a;
}

il void add(int u,int v,int c){rd[v]++,deg[v]++,to[++cnt]=v,net[cnt]=h[u],w[cnt]=c,h[u]=cnt;}

int main(){
    n=gi(),m=gi();
    int u,v,c;
    For(i,1,m) u=gi(),v=gi(),c=gi(),add(v,u,c);
    q.push(n);
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=h[u];i;i=net[i]){
            f[to[i]]+=(f[u]+w[i])/deg[to[i]];
            if(!--rd[to[i]]) q.push(to[i]);
        }
    }
    printf("%.2lf",f[1]);
    return 0;
}

 

posted @ 2018-07-28 14:19  five20  阅读(150)  评论(0编辑  收藏  举报
Live2D