Evanyou Blog 彩带

P1736 创意吃鱼法

题目描述

回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*)。她发现,把大池子视为01矩阵(0表示对应位置无鱼,1表示对应位置有鱼)有助于决定吃鱼策略。

在代表池子的01矩阵中,有很多的正方形子矩阵,如果某个正方形子矩阵的某条对角线上都有鱼,且此正方形子矩阵的其他地方无鱼,猫猫就可以从这个正方形子矩阵“对角线的一端”下口,只一吸,就能把对角线上的那一队鲜鱼吸入口中。

猫猫是个贪婪的家伙,所以她想一口吃掉尽量多的鱼。请你帮猫猫计算一下,她一口下去,最多可以吃掉多少条鱼?

输入输出格式

输入格式:

有多组输入数据,每组数据:

第一行有两个整数n和m(n,m≥1),描述池塘规模。接下来的n行,每行有m个数字(非“0”即“1”)。每两个数字之间用空格隔开。

对于30%的数据,有n,m≤100

对于60%的数据,有n,m≤1000

对于100%的数据,有n,m≤2500

输出格式:

只有一个整数——猫猫一口下去可以吃掉的鱼的数量,占一行,行末有回车。

输入输出样例

输入样例#1: 
4 6
0 1 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 1
0 1 1 0 1 0
输出样例#1: 
3

说明

右上角的

1 0 0 0 1 0 0 0 1

 

Solution:

  本题标签$DP$,那么只能是多维$DP$了,那么先尝试定义二维状态$f[i][j]$表示以$(i,j)$点为矩形下边顶点的最大边长。

  由于对角线可以从右下往左上、也可以从左下往右上,转移时就要分两种情况判断。

  先考虑其中$(i,j)$为右下顶点的情况:

  不难想到以$(i,j)$为下边顶点的矩形最大边长$f[i][j]$等于:$f[i-1][j-1]+1$(表示$(i,j)$右上的点为右下顶点的最大边长),仔细思考这样显然有问题,会受到横向和纵向的$0/1$限制,所以还得多处理两个表示横向和纵向的变量:$s1[i][j]$(表示$(i,j)$点往左或往右连续$0$的个数)、$s2[i][j]$(表示$(i,j)$点往上连续$0$的个数),直接$n^2$预处理就$OK$了。

  那么$(i,j)$为右下顶点的状态转移方程:$f[i][j]=Min(f[i-1][j-1],Min(s1[i][j-1],s2[i-1][j]))+1$

  再类似的求法去求$(i,j)$为左下顶点的$f[i][j]$。

  输出$ans$($ans$取两次$DP$中的所有状态的最大值)就$OK$了。

代码:

 

#include<bits/stdc++.h>
#define Max(a,b) (a)>(b)?(a):(b)
#define Min(a,b) (a)>(b)?(b):(a)
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=2505;
int n,m,ans,w[N][N],f[N][N],s1[N][N],s2[N][N];
int main(){
    ios::sync_with_stdio(0);
    cin>>n>>m;
    For(i,1,n) For(j,1,m) {
        cin>>w[i][j];
        if(!w[i][j])s1[i][j]=s1[i][j-1]+1,s2[i][j]=s2[i-1][j]+1;
        else f[i][j]=(Min(f[i-1][j-1],Min(s1[i][j-1],s2[i-1][j])))+1;
        ans=Max(ans,f[i][j]);
    }
    memset(f,0,sizeof(f));memset(s1,0,sizeof(s1));memset(s2,0,sizeof(s2));
    For(i,1,n) Bor(j,1,m){
        if(!w[i][j])s1[i][j]=s1[i][j+1]+1,s2[i][j]=s2[i-1][j]+1;
        else f[i][j]=(Min(f[i-1][j+1],Min(s1[i][j+1],s2[i-1][j])))+1;
        ans=Max(ans,f[i][j]);
    }
    cout<<ans;
    return 0;
}

 

 

 

 

posted @ 2018-05-09 21:43  five20  阅读(314)  评论(0编辑  收藏  举报
Live2D