动态规划|蒜头君跳木桩-最长下降子序列

蒜头君跳木桩

蒜头君面前有一排 nn 个木桩,木桩的高度分别是h_1,h_2,h_3\cdots h_nh1​,h2​,h3​⋯hn​。蒜头第一步可以跳到任意一个木桩,接下来的每一步蒜头不能往回跳只能往前跳,并且跳下一个木桩的高度 不大于 当前木桩。蒜头君希望能踩到尽量多的木桩,请你帮蒜头计算,最多能踩到多少个木桩。

输入格式
第一行输入一个整数 nn 代表木桩个数。第二行输入 nn 个整数 h_1,h_2,h_3\cdots h_nh1​,h2​,h3​⋯hn​,分别代表 nn 个木桩的高度。(1 \leq n \leq 1000,1 \leq h_i \leq 1000001≤n≤1000,1≤hi​≤100000)

输出格式
输出一个整数,代表最多能踩到的木桩个数,占一行。

样例输入
6
3 6 4 1 4 2
样例输出
4

思路:最长下降子序列

#include<iostream>
#include<algorithm>
using namespace std;

/*最长下降子序列*/

const int inf = 0x3f3f3f3f;
const int MAX_N = 1010;
int n;
int a[MAX_N];
int dp[MAX_N];
int ans = -inf;

int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	
	for(int i=1;i<=n;i++){
		dp[i] = 1;
		for(int j=1;j<i;j++){
			if(a[j]>=a[i]){
				dp[i] = max(dp[i],dp[j] + 1);
			}
		}
		ans = max(ans,dp[i]);
	}
	if(ans == -inf){
		cout<<0<<endl;
	}else{
		cout<<ans<<endl;
	}
	return 0;
}
posted @ 2019-01-24 19:21  fishers  阅读(237)  评论(0编辑  收藏  举报