上一节,介绍了HurlStack的实现,根据我们外层的代码:

/**
     * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
     *
     * @param context A {@link Context} to use for creating the cache dir.
     * @param stack An {@link HttpStack} to use for the network, or null for default.
     * @return A started {@link RequestQueue} instance.
     */
    public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
        File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

        String userAgent = "volley/0";
        try {
            String packageName = context.getPackageName();
            PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
            userAgent = packageName + "/" + info.versionCode;
        } catch (NameNotFoundException e) {
        }

        if (stack == null) {
            if (Build.VERSION.SDK_INT >= 9) {
                stack = new HurlStack();
            } else {
                // Prior to Gingerbread, HttpUrlConnection was unreliable.
                // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
            }
        }

        Network network = new BasicNetwork(stack);

        RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
        queue.start();

        return queue;
    }

   这一节,我将阅读并记录BasicNetwork的实现。

  

    /**
     * @param httpStack HTTP stack to be used
     */
    public BasicNetwork(HttpStack httpStack) {
        // If a pool isn't passed in, then build a small default pool that will give us a lot of
        // benefit and not use too much memory.
        this(httpStack, new ByteArrayPool(DEFAULT_POOL_SIZE));
    }

    /**
     * @param httpStack HTTP stack to be used
     * @param pool a buffer pool that improves GC performance in copy operations
     */
    public BasicNetwork(HttpStack httpStack, ByteArrayPool pool) {
        mHttpStack = httpStack;
        mPool = pool;
    }

 

   先看BasicNetwork的构造方法。我们在此方法中,传入了HttpStack,这个上一篇已经分析过了。然后我们新建了一个ByteArrayPool传入。我们可以阅读一下ByteArrayPool这个类。

public class ByteArrayPool {
    /** The buffer pool, arranged both by last use and by buffer size */
    private List<byte[]> mBuffersByLastUse = new LinkedList<byte[]>();
    private List<byte[]> mBuffersBySize = new ArrayList<byte[]>(64);

    /** The total size of the buffers in the pool */
    private int mCurrentSize = 0;

    /**
     * The maximum aggregate size of the buffers in the pool. Old buffers are discarded to stay
     * under this limit.
     */
    private final int mSizeLimit;

    /** Compares buffers by size */
    protected static final Comparator<byte[]> BUF_COMPARATOR = new Comparator<byte[]>() {
        @Override
        public int compare(byte[] lhs, byte[] rhs) {
            return lhs.length - rhs.length;
        }
    };

    /**
     * @param sizeLimit the maximum size of the pool, in bytes
     */
    public ByteArrayPool(int sizeLimit) {
        mSizeLimit = sizeLimit;
    }

    /**
     * Returns a buffer from the pool if one is available in the requested size, or allocates a new
     * one if a pooled one is not available.
     *
     * @param len the minimum size, in bytes, of the requested buffer. The returned buffer may be
     *        larger.
     * @return a byte[] buffer is always returned.
     */
    public synchronized byte[] getBuf(int len) {
        for (int i = 0; i < mBuffersBySize.size(); i++) {
            byte[] buf = mBuffersBySize.get(i);
            if (buf.length >= len) {
                mCurrentSize -= buf.length;
                mBuffersBySize.remove(i);
                mBuffersByLastUse.remove(buf);
                return buf;
            }
        }
        return new byte[len];
    }

    /**
     * Returns a buffer to the pool, throwing away old buffers if the pool would exceed its allotted
     * size.
     *
     * @param buf the buffer to return to the pool.
     */
    public synchronized void returnBuf(byte[] buf) {
        if (buf == null || buf.length > mSizeLimit) {
            return;
        }
        mBuffersByLastUse.add(buf);
        int pos = Collections.binarySearch(mBuffersBySize, buf, BUF_COMPARATOR);
        if (pos < 0) {
            pos = -pos - 1;
        }
        mBuffersBySize.add(pos, buf);
        mCurrentSize += buf.length;
        trim();
    }

    /**
     * Removes buffers from the pool until it is under its size limit.
     */
    private synchronized void trim() {
        while (mCurrentSize > mSizeLimit) {
            byte[] buf = mBuffersByLastUse.remove(0);
            mBuffersBySize.remove(buf);
            mCurrentSize -= buf.length;
        }
    }

}

 

  整体上来说,它是一个ByteArray的缓冲类,它提供了存、取和清理三个功能。目的是让ByteArray保持在合适的长度,这个设计理念非常类似LruCache。 接着就是阅读BasicNetwork中的performRequest方法。为什么是这个方法,在Volley的第一篇分析中,我们曾阅读过RequestQueue的源码,中间有这样一段:  

        for (int i = 0; i < mDispatchers.length; i++) {
            NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                    mCache, mDelivery);
            mDispatchers[i] = networkDispatcher;
            networkDispatcher.start();
        }

 

   然后在NetworkDispatcher这个Thread的子类中的run方法中,又有这样一段:

                // Perform the network request.
                NetworkResponse networkResponse = mNetwork.performRequest(request);
                request.addMarker("network-http-complete");

 

  当时我们一笔带过了。BasicNetwork的performRequest方法实现代码,比较长,我们只能分段阅读。

    @Override
    public NetworkResponse performRequest(Request<?> request) throws VolleyError {
        long requestStart = SystemClock.elapsedRealtime();
        while (true) {
            HttpResponse httpResponse = null;
            byte[] responseContents = null;
            Map<String, String> responseHeaders = Collections.emptyMap();
            try {
                // Gather headers.
                Map<String, String> headers = new HashMap<String, String>();
                addCacheHeaders(headers, request.getCacheEntry());
                httpResponse = mHttpStack.performRequest(request, headers);

 

  我们很容易发现,BasicNetwork的performRequest整体是一个无限循环中。我们来看看循环里面的内容:

  首先创建了HttpResponse、一个存放response内容的byte数组和一个存放response头的Map。

  然后,调用addCacheHeader方法,我们可以看一下这个方法的实现,比较简单。 

    private void addCacheHeaders(Map<String, String> headers, Cache.Entry entry) {
        // If there's no cache entry, we're done.
        if (entry == null) {
            return;
        }

        if (entry.etag != null) {
            headers.put("If-None-Match", entry.etag);
        }

        if (entry.lastModified > 0) {
            Date refTime = new Date(entry.lastModified);
            headers.put("If-Modified-Since", DateUtils.formatDate(refTime));
        }
    }

  就是将request中缓存的etag和lastModified属性加入到response的header中。

  最后就是执行HurlStack中的performRequest方法,这个在第二节中已经详细记录过,不再赘述。

  接着是下面一段: 

                httpResponse = mHttpStack.performRequest(request, headers);
                StatusLine statusLine = httpResponse.getStatusLine();
                int statusCode = statusLine.getStatusCode();

                responseHeaders = convertHeaders(httpResponse.getAllHeaders());

 

  这一段的关键方法是converHeaders,我们来看看它的实现。

    /**
     * Converts Headers[] to Map<String, String>.
     */
    protected static Map<String, String> convertHeaders(Header[] headers) {
        Map<String, String> result = new TreeMap<String, String>(String.CASE_INSENSITIVE_ORDER);
        for (int i = 0; i < headers.length; i++) {
            result.put(headers[i].getName(), headers[i].getValue());
        }
        return result;
    }

  这个方法其实比较简单,就是将httpResponse中的headers取出来,放入responseHaeader的map中。经过两上面段代码,我们将缓存中的header和HurlStack返回的httpResponse的header做了合并,最终都存入responseHeaders这个Map中。

  

                // Handle cache validation.
                if (statusCode == HttpStatus.SC_NOT_MODIFIED) {

                    Entry entry = request.getCacheEntry();
                    if (entry == null) {
                        return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,
                                responseHeaders, true,
                                SystemClock.elapsedRealtime() - requestStart);
                    }

                    // A HTTP 304 response does not have all header fields. We
                    // have to use the header fields from the cache entry plus
                    // the new ones from the response.
                    // http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
                    entry.responseHeaders.putAll(responseHeaders);
                    return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,
                            entry.responseHeaders, true,
                            SystemClock.elapsedRealtime() - requestStart);
                }

 

  接下来的一段进行了缓存校验。如果请求返回的状态码是304(即SC_NOT_MODIFIED),表示自上次请求之后,所请求的内容没有任何改变。这种情况我就可以直接在缓存中取数据。 不论缓存是否为空,我们都会新建一个NetworkResponse对象返回。区别只在于,如果有缓存,我们会将刚刚合并好的httpResponse的header加入其中。

 

                // Some responses such as 204s do not have content.  We must check.
                if (httpResponse.getEntity() != null) {
                  responseContents = entityToBytes(httpResponse.getEntity());
                } else {
                  // Add 0 byte response as a way of honestly representing a
                  // no-content request.
                  responseContents = new byte[0];
                }

  校验完304的情况后,开始对204进行校验。即是否返回无内容。如果返回无内容则新建一个空byte数组,如果有内容则需要一个转化。我们来看看这个转化方法entityToBytes:

    /** Reads the contents of HttpEntity into a byte[]. */
    private byte[] entityToBytes(HttpEntity entity) throws IOException, ServerError {
        PoolingByteArrayOutputStream bytes =
                new PoolingByteArrayOutputStream(mPool, (int) entity.getContentLength());
        byte[] buffer = null;
        try {
            InputStream in = entity.getContent();
            if (in == null) {
                throw new ServerError();
            }
            buffer = mPool.getBuf(1024);
            int count;
            while ((count = in.read(buffer)) != -1) {
                bytes.write(buffer, 0, count);
            }
            return bytes.toByteArray();
        } finally {
            try {
                // Close the InputStream and release the resources by "consuming the content".
                entity.consumeContent();
            } catch (IOException e) {
                // This can happen if there was an exception above that left the entity in
                // an invalid state.
                VolleyLog.v("Error occured when calling consumingContent");
            }
            mPool.returnBuf(buffer);
            bytes.close();
        }
    }

   一个比较基础的数据读取,运用了之前提到的ByteArrayPool这个类。一次只读取1024位。值得注意的是,bytes.write进行了重写。

    @Override
    public synchronized void write(byte[] buffer, int offset, int len) {
        expand(len);
        super.write(buffer, offset, len);
    }

    /**
     * Ensures there is enough space in the buffer for the given number of additional bytes.
     */
    private void expand(int i) {
        /* Can the buffer handle @i more bytes, if not expand it */
        if (count + i <= buf.length) {
            return;
        }
        byte[] newbuf = mPool.getBuf((count + i) * 2);
        System.arraycopy(buf, 0, newbuf, 0, count);
        mPool.returnBuf(buf);
        buf = newbuf;
    }

 

   如果需要读取的流,长度超过了1024会进行扩展。读取完成后,会将数据再放回mPool,进行缓存。

  接下来,就是performRequest方法的try块儿中的最后一段:

                logSlowRequests(requestLifetime, request, responseContents, statusLine);

                if (statusCode < 200 || statusCode > 299) {
                    throw new IOException();
                }
                return new NetworkResponse(statusCode, responseContents, responseHeaders, false,
                        SystemClock.elapsedRealtime() - requestStart);

 

   这一段分为三步,第一步,检测慢速请求,第二步,检测2xx错误,第三步,返回NetworkResponse。

  我们先来看看检测慢速请求的代码:

  

    /**
     * Logs requests that took over SLOW_REQUEST_THRESHOLD_MS to complete.
     */
    private void logSlowRequests(long requestLifetime, Request<?> request,
            byte[] responseContents, StatusLine statusLine) {
        if (DEBUG || requestLifetime > SLOW_REQUEST_THRESHOLD_MS) {
            VolleyLog.d("HTTP response for request=<%s> [lifetime=%d], [size=%s], " +
                    "[rc=%d], [retryCount=%s]", request, requestLifetime,
                    responseContents != null ? responseContents.length : "null",
                    statusLine.getStatusCode(), request.getRetryPolicy().getCurrentRetryCount());
        }
    }

 

  这一段代码,只做了一个简单的判断,当请求用时,大于SLOW_REQUEST_THRESHOLD_MS时,即为慢速请求,报出log。

  至此,performRequest方法的try块儿,就阅读完了。下面阅读catch部分,这里涉及了一些错误处理方法和重发机制。  

            } catch (SocketTimeoutException e) {
                attemptRetryOnException("socket", request, new TimeoutError());
            } catch (ConnectTimeoutException e) {
                attemptRetryOnException("connection", request, new TimeoutError());
            } catch (MalformedURLException e) {
                throw new RuntimeException("Bad URL " + request.getUrl(), e);
            } catch (IOException e) {
                int statusCode = 0;
                NetworkResponse networkResponse = null;
                if (httpResponse != null) {
                    statusCode = httpResponse.getStatusLine().getStatusCode();
                } else {
                    throw new NoConnectionError(e);
                }
                VolleyLog.e("Unexpected response code %d for %s", statusCode, request.getUrl());
                if (responseContents != null) {
                    networkResponse = new NetworkResponse(statusCode, responseContents,
                            responseHeaders, false, SystemClock.elapsedRealtime() - requestStart);
                    if (statusCode == HttpStatus.SC_UNAUTHORIZED ||
                            statusCode == HttpStatus.SC_FORBIDDEN) {
                        attemptRetryOnException("auth",
                                request, new AuthFailureError(networkResponse));
                    } else {
                        // TODO: Only throw ServerError for 5xx status codes.
                        throw new ServerError(networkResponse);
                    }
                } else {
                    throw new NetworkError(networkResponse);
                }
            }

 

  我们先来看一看attemptRetryOnException方法,在超时的异常中,它首先会被调用。  

    /**
     * Attempts to prepare the request for a retry. If there are no more attempts remaining in the
     * request's retry policy, a timeout exception is thrown.
     * @param request The request to use.
     */
    private static void attemptRetryOnException(String logPrefix, Request<?> request,
            VolleyError exception) throws VolleyError {
        RetryPolicy retryPolicy = request.getRetryPolicy();
        int oldTimeout = request.getTimeoutMs();

        try {
            retryPolicy.retry(exception);
        } catch (VolleyError e) {
            request.addMarker(
                    String.format("%s-timeout-giveup [timeout=%s]", logPrefix, oldTimeout));
            throw e;
        }
        request.addMarker(String.format("%s-retry [timeout=%s]", logPrefix, oldTimeout));
    }

   代码会取出请求中的重发策略,进行重发。RetryPolicy是个接口,我们需要在自己实现。RetryPolicy:

/**
 * Retry policy for a request.
 */
public interface RetryPolicy {

    /**
     * Returns the current timeout (used for logging).
     */
    public int getCurrentTimeout();

    /**
     * Returns the current retry count (used for logging).
     */
    public int getCurrentRetryCount();

    /**
     * Prepares for the next retry by applying a backoff to the timeout.
     * @param error The error code of the last attempt.
     * @throws VolleyError In the event that the retry could not be performed (for example if we
     * ran out of attempts), the passed in error is thrown.
     */
    public void retry(VolleyError error) throws VolleyError;
}

 

   RetryPolicy接口包含了三个方法,获取超时,获取重发次数和重发。

 

  至此,BasicNetwork的基本实现,概读了一遍。接下来,会阅读Volley中的Request。

 

Done~

posted on 2016-05-16 00:42  Fishbonell  阅读(337)  评论(0编辑  收藏  举报