POJ 2446 Chessboard(二分图最大匹配)

题意:

M*N的棋盘,规定其中有K个格子不能放任何东西。(即不能被覆盖)

每一张牌的形状都是1*2,问这个棋盘能否被牌完全覆盖(K个格子除外)

 

思路:

M、N很小,把每一个可以覆盖的格子都离散成一个个点,然后二分图最大匹配。

一个重要的问题**:可不可能存在建完的图是这样的情况:1-2,2-3,3-4,4-5,5-1?这种情况二分图最大匹配是5,但实际上答案是不对的。

证明:不可能存在这样的由奇个点构成的环图。我们按这种方法来看看能不能构造出这样一个棋盘。

假设有2k+1个个格(奇数),则第k+1个格一定有一个位置。并且一定与第k个格和第k+2个格相邻。

假设第k个格与第k+2个格的横坐标之差是x,纵坐标之差是y。则有x+y=2。(画个图)

接下来添加第k-1个格和第k+3个格,然后添加第k-2个格和第k+4个格,......一直到添加完最后一对,即第1个格和第2k+1个格,然后结束。

每添加一对格时,可以发现新的x+y的值要么是上一次的x+y的值-2,要么是不变,要么是+2。

而真实的情况是添加到最后一对,即第1个格和第2k+1个格,这两个格子是相邻的,也就是最后一次的x+y=1。而这是不可能的。

故不存在那种图。故直接二分图最大匹配是正确的。

 

代码:

int n,m,k;
int board[35][35];
vector<int> graph[1500];
int cx[1500],cy[1500];
bool bmask[1500];
int cc;


int findPath(int u){
    int L=graph[u].size();
    rep(i,0,L-1){
        int v=graph[u][i];
        if(!bmask[v]){
            bmask[v]=true;
            if(cy[v]==-1||findPath(cy[v])){
                cy[v]=u;
                cx[u]=v;
                return 1;
            }
        }
    }
    return 0;
}
int MaxMatch(){
    int ans=0;
    rep(i,1,cc) cx[i]=cy[i]=-1;
    rep(i,1,cc) if(cx[i]==-1){
        mem(bmask,false);
        ans+=findPath(i);
    }
    return ans;
}

int main(){
    while(scanf("%d%d%d",&m,&n,&k)!=EOF){
        mem(board,0);
        rep(i,1,k){
            int x,y;
            scanf("%d%d",&y,&x);
            board[x][y]=-1;
        }
        rep(i,1,m) rep(j,1,n){
            if(board[i][j]==-1) continue;
            board[i][j]=++cc;
        }
        rep(i,1,cc) graph[i].clear();
        rep(k,0,3) rep(i,1,m) rep(j,1,n){
            if(board[i][j]==-1) continue;
            int ni=i+uu[k], nj=j+vv[k];
            if(ni>0 && ni<=m && nj>0 && nj<=n && board[ni][nj]!=-1) graph[board[i][j]].push_back(board[ni][nj]);
        }
        int dd=MaxMatch();
        if(dd==cc)
            puts("YES");
        else
            puts("NO");
    }
}

 

posted @ 2014-11-13 15:32  fish7  阅读(237)  评论(0编辑  收藏  举报