cf Inverse the Problem (最小生成树+DFS)
题意:
N个点。N行N列d[i][j]。
d[i][j]:结点i到结点j的距离。
问这N个点是否可能是一棵树。是输出YES,否则输出NO。
思路:
假设这个完全图是由一棵树得来的,则我们对这个完全图求最小生成树,得到原树。(画个图就明白)
故我们对完全图求最小生成树,然后用DFS从这棵树上的每个点出发,判断距离是否和矩阵d相同。
注意:
用vector存与每个点相连树枝的另一端,否则超时。用了vector也耗了1400多秒,限时2s。
代码:
#include <cstdio> #include <iostream> #include <string.h> #include <cstdlib> #include <algorithm> #include <queue> #include <vector> #include <cmath> #include <map> #include <stack> using namespace std; int const uu[4] = {1,-1,0,0}; int const vv[4] = {0,0,1,-1}; typedef long long ll; int const maxn = 50005; int const inf = 0x3f3f3f3f; ll const INF = 0x7fffffffffffffffll; double eps = 1e-10; double pi = acos(-1.0); #define rep(i,s,n) for(int i=(s);i<=(n);++i) #define rep2(i,s,n) for(int i=(s);i>=(n);--i) #define mem(v,n) memset(v,(n),sizeof(v)) #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 struct node{ int x,y,len; }; int n; int d[2005][2005], a[2005][2005]; int fa[2005]; node edge[4000005]; vector<int> graph[2005]; bool cmp(node a,node b){ return a.len<b.len; } int findFa(int x){ if(fa[x]!=x) fa[x]=findFa(fa[x]); return fa[x]; } bool dfs(int start,int x,int fa,int weight){ if(d[start][x]!=weight){ return false; } int L=graph[x].size(); rep(i,0,L-1){ int v=graph[x][i]; if(v==fa) continue; bool t=dfs(start,v,x,weight+a[x][v]); if(!t) return false; } return true; } int main(){ scanf("%d",&n); rep(i,1,n) rep(j,1,n) scanf("%d",&d[i][j]); rep(i,1,n) if(d[i][i]!=0){ printf("NO\n"); return 0; } rep(i,1,n-1) rep(j,i+1,n){ if(d[i][j]==0 || (d[i][j]!=d[j][i])){ printf("NO\n"); return 0; } } int eNum=0; mem(a,0); rep(i,1,n-1) rep(j,i+1,n){ edge[++eNum].x=i, edge[eNum].y=j; edge[eNum].len=d[i][j]; } sort(edge+1,edge+1+eNum,cmp); rep(i,1,n) fa[i]=i; rep(i,1,n) graph[i].clear(); rep(i,1,eNum){ int xx=edge[i].x, yy=edge[i].y; int fx=findFa(xx), fy=findFa(yy); if(fx!=fy){ fa[fx]=fy; a[xx][yy]=a[yy][xx]=edge[i].len; graph[xx].push_back(yy); graph[yy].push_back(xx); } } int t=findFa(1); rep(i,2,n) if(findFa(i)!=t){ printf("NO\n"); return 0; } rep(i,1,n){ bool k=dfs(i,i,-1,0); //从顶点i出发 if(!k){ printf("NO\n"); return 0; } } printf("YES\n"); }