cf Inverse the Problem (最小生成树+DFS)

题意:

N个点。N行N列d[i][j]。

d[i][j]:结点i到结点j的距离。

问这N个点是否可能是一棵树。是输出YES,否则输出NO。

 

思路:

假设这个完全图是由一棵树得来的,则我们对这个完全图求最小生成树,得到原树。(画个图就明白)

故我们对完全图求最小生成树,然后用DFS从这棵树上的每个点出发,判断距离是否和矩阵d相同。

 

注意:

用vector存与每个点相连树枝的另一端,否则超时。用了vector也耗了1400多秒,限时2s。

 

代码:

#include <cstdio>
#include <iostream>
#include <string.h>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <map>
#include <stack>
using namespace std;
int const uu[4] = {1,-1,0,0};
int const vv[4] = {0,0,1,-1};
typedef long long ll;
int const maxn = 50005;
int const inf = 0x3f3f3f3f;
ll const INF = 0x7fffffffffffffffll;
double eps = 1e-10;
double pi = acos(-1.0);
#define rep(i,s,n) for(int i=(s);i<=(n);++i)
#define rep2(i,s,n) for(int i=(s);i>=(n);--i)
#define mem(v,n) memset(v,(n),sizeof(v))
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
struct node{
    int x,y,len;
};
int n;
int d[2005][2005], a[2005][2005];
int fa[2005];
node edge[4000005];
vector<int> graph[2005];

bool cmp(node a,node b){
    return a.len<b.len;
}


int findFa(int x){
    if(fa[x]!=x) fa[x]=findFa(fa[x]);
    return fa[x];
}

bool dfs(int start,int x,int fa,int weight){
    if(d[start][x]!=weight){
        return false;
    }
    int L=graph[x].size();
    rep(i,0,L-1){
        int v=graph[x][i];
        if(v==fa) continue;
        bool t=dfs(start,v,x,weight+a[x][v]);
        if(!t) return false;
    }
    return true;
}

int main(){
    scanf("%d",&n);
    rep(i,1,n) rep(j,1,n) scanf("%d",&d[i][j]);

    rep(i,1,n) if(d[i][i]!=0){
        printf("NO\n");
        return 0;
    }
    rep(i,1,n-1) rep(j,i+1,n){
        if(d[i][j]==0 || (d[i][j]!=d[j][i])){
            printf("NO\n");
            return 0;
        }
    }

    int eNum=0;
    mem(a,0);

    rep(i,1,n-1) rep(j,i+1,n){
        edge[++eNum].x=i, edge[eNum].y=j;
        edge[eNum].len=d[i][j];
    }
    sort(edge+1,edge+1+eNum,cmp);
    rep(i,1,n) fa[i]=i;
    rep(i,1,n) graph[i].clear();

    rep(i,1,eNum){
        int xx=edge[i].x, yy=edge[i].y;
        int fx=findFa(xx), fy=findFa(yy);
        if(fx!=fy){
            fa[fx]=fy;
            a[xx][yy]=a[yy][xx]=edge[i].len;
            graph[xx].push_back(yy);
            graph[yy].push_back(xx);
        }
    }

    int t=findFa(1);
    rep(i,2,n) if(findFa(i)!=t){
        printf("NO\n");
        return 0;
    }

    rep(i,1,n){
        bool k=dfs(i,i,-1,0); //从顶点i出发
        if(!k){
            printf("NO\n");
            return 0;
        }
    }
    printf("YES\n");
}

 

posted @ 2014-09-30 02:35  fish7  阅读(225)  评论(0编辑  收藏  举报