hdu 5018 Revenge of GCD

题意:

给你两个数:X和Y  。输出它们的第K大公约数。若不存在输出 -1


数据范围:

1 <= X, Y, K <= 1 000 000 000 000


思路:

它俩的公约数一定是gcd(X,Y)的因数。(把它俩分解成质因数相乘的形式就可以看出)

故找出gcd(x,y)所有的因数,从大到小排序,输出第K个即可。


代码:

 

#include <cstdio>
#include <iostream>
#include <string.h>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <map>
#include <stack>
using namespace std;
int const uu[4] = {1,-1,0,0};
int const vv[4] = {0,0,1,-1};
typedef long long ll;
int const maxn = 50005;
int const inf = 0x3f3f3f3f;
ll const INF = 0x7fffffffffffffffll;
double eps = 1e-10;
double pi = acos(-1.0);
#define rep(i,s,n) for(int i=(s);i<=(n);++i)
#define rep2(i,s,n) for(int i=(s);i>=(n);--i)
#define mem(v,n) memset(v,(n),sizeof(v))
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1

ll gcd(ll a,ll b){
    return b==0?a:gcd(b,a%b);
}

ll factor[1000005];
ll x,y,k;
int T;

bool cmp(ll a,ll b){
    return a>b;
}
int main(){
    cin >> T;
    while(T--){
        scanf("%I64d%I64d%I64d",&x,&y,&k);
        ll d = gcd(x,y);
        ll m = sqrt(d+0.5);
        int num = 0;
        rep(i,1,m) if(d%i==0){
            factor[++num] = i;
            if(i!=d/i) factor[++num] = d/i;
        }
        sort(factor+1,factor+1+num,cmp);
        if(k>num) printf("-1\n");
        else printf("%I64d\n",factor[k]);
    }
}

 

 

  

 



 

posted @ 2014-09-20 19:33  fish7  阅读(126)  评论(0编辑  收藏  举报