es分组聚合Agg nested
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | private void test(){ //第一组聚合,按brandDataNested的name分组 //这个size是一个可配置的精度 TermsAggregationBuilder brandNameAgg = AggregationBuilders.terms( "brand" ) .field( "brandDataNested.name.keyword" ).size( 10 ); //第二组聚合,按name分组之后再使用sum求销额的和 String sumName = "brandSalesVolume" ; SumAggregationBuilder brandSalesVolume = AggregationBuilders.sum(sumName).field( "brandDataNested.salesVolume" ); //第一组聚合中提交第二组聚合 brandNameAgg.subAggregation(brandSalesVolume); //聚合排序,这里使用销额倒排 brandNameAgg.order(BucketOrder.aggregation(sumName, false )); //在最外层的查询将agg聚合设置进去,并且使用nested NestedAggregationBuilder nestedAggregationBuilder = AggregationBuilders.nested( "brandDataNested" , "brandDataNested" ) .subAggregation(brandNameAgg); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); //此处可以添加筛选语句 // searchSourceBuilder.query(query); //聚合查询 searchSourceBuilder.aggregation(nestedAggregationBuilder); //只返回聚合统计结果,不返回关联的具体文档 searchSourceBuilder.size( 0 ); SearchRequest request = new SearchRequest( "live_room" ); request.source(searchSourceBuilder); try { SearchResponse search = restHighLevelClient.search(request, RequestOptions.DEFAULT); //获取所有桶 Aggregations brandNameAggregations = search.getAggregations(); ParsedNested brandDataNested = brandNameAggregations.get( "brandDataNested" ); Aggregations brandDataNestedAggregations = brandDataNested.getAggregations(); Terms brandNameTerms = brandDataNestedAggregations.get( "brand" ); for (Terms.Bucket brandNameTermsBucket : brandNameTerms.getBuckets()) { Aggregations aggregationsSon = brandNameTermsBucket.getAggregations(); String keyAsString = brandNameTermsBucket.getKeyAsString(); long docCount = brandNameTermsBucket.getDocCount(); ParsedSum brandSalesVolumeMax1 = aggregationsSon.get(sumName); double value = brandSalesVolumeMax1.getValue(); } } catch (Exception e) { } } |
索引结构:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | 索引结构 { "properties" : { "roomId" : { "type" : "long" }, "roomName" : { "type" : "text" , "fields" : { "keyword" : { "type" : "keyword" , "ignore_above" : 256 } } }, "brandDataNested" : { "type" : "nested" , "properties" : { "id" : { "type" : "long" }, "liveSales" : { "type" : "long" }, "name" : { "type" : "text" , "fields" : { "keyword" : { "type" : "keyword" , "ignore_above" : 256 } } }, "productNum" : { "type" : "long" }, "salesVolume" : { "type" : "long" }, "sort" : { "type" : "long" } } } } } |
参考: https://blog.csdn.net/h321880947/article/details/126096440
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 通过 API 将Deepseek响应流式内容输出到前端