Python实现8中常用排序算法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | L = [ 2 , 6 , 4 , 7 , 9 , 1 , 3 , 5 , 8 ] # 1.插入排序 def insert_sort( List ): n = len ( List ) for i in range ( 1 ,n): # 得到索引 j = i - 1 # 获取当前元素之前的索引 temp = List [i] while j > = 0 : # 当索引大于等于时开始循环 if temp < List [j]: # 当List[i]元素小于之前的元素 List [j + 1 ] = List [j] # 交换两个元素的位置 List [j] = temp j - = 1 # 继续比较交换后的list[i]和再前一个元素的大小,继续循环 return List print (insert_sort(L)) #2.冒泡排序 def bubble_sort( List ): n = len ( List ) for i in range (n): for j in range (i + 1 , n): if List [i] > List [j]: List [j], List [i] = List [i], List [j] return List print (bubble_sort(L)) # 3.快速排序 def quick_sort( List ,low,high): i = low j = high if i > = j: return List key = List [i] while i < j: # 当高位游标大于基准值时, 高位游标向左移动 while i < j and List [j]> = key: j = j - 1 List [i] = List [j] # 当低位游标指向的值,小于基准值时, 低位游标向右移动 while i < j and List [i]< = key: i = i + 1 List [j] = List [i] List [i] = key quick_sort( List ,low,i - 1 ) # 对基准值左边的未排序队列排序 quick_sort( List ,j + 1 ,high) # 对基准值右边的未排序队列排序 return List print (quick_sort(L, 0 , len (L) - 1 )) #4.选择排序 def select_sort( List ): length = len ( List ) for i in range (length): # 得出全部的索引 min_index = i # 假设最小的索引 for j in range (i,length): # 获取i之后的索引 if List [j]< List [min_index]: # 比较i 之后的元素与最小元素的大小 min_index = j # 如果小于最小元素,那么久交换索引 List [i], List [min_index] = List [min_index], List [i] # 交换最小的索引指向的值 return List print (select_sort(L)) #5.归并排序 def merge_sort( list ): if len ( list )< = 1 : return list # 根据长度确定中间位置 mid = int ( len ( list ) / 2 ) left = merge_sort( list [:mid]) right = merge_sort( list [mid:]) return merge(left,right) def merge(list1,list2): list = [] i,j = 0 , 0 while i< len (list1) and j< len (list2): if list1[i]<list2[j]: list .append(list1[i]) i = i + 1 elif list1[i]> = list2[j]: list .append(list2[j]) j = j + 1 list .extend(list1[i:]) list .extend(list2[j:]) return list print (merge_sort(L)) #6.希尔排序 def shell_sort( List ): step = int ( len ( List ) / 2 ) while step > 0 : for i in range (step, int ( len ( List ))): while i > = step and List [i - step] > List [i]: List [i], List [i - step] = List [i - step], List [i] i - = step step = int (step / 2 ) return List print (shell_sort(L)) # 7.堆排序 def adjust_heap( List , i, size): lchild = 2 * i + 1 rchild = 2 * i + 2 m = i if i < int (size / 2 ) and List [lchild] > List [m]: m = lchild if rchild < size and List [rchild] > List [m]: m = rchild if m ! = i: List [m], List [i] = List [i], List [m] adjust_heap( List , m, size) def build_heap( List , size): for i in range ( 0 , int (size / 2 ))[:: - 1 ]: adjust_heap( List , i, size) def heap_sort( List ): size = len ( List ) build_heap( List , size) for i in range ( 0 , size)[:: - 1 ]: List [ 0 ], List [i] = List [i], List [ 0 ] adjust_heap( List , 0 , i) return List print (heap_sort(L)) # 8.基数排序 import math def radix_sort( List , radix = 10 ): n = int (math.ceil(math.log( max ( List ), radix))) bucket = [[] for i in range (radix)] for i in range ( 1 , n + 1 ): for j in List : bucket[ int (j / (radix * * (i - 1 ))) % (radix * * i)].append(j) del List [:] for x in bucket: List + = x del x[:] return List print (radix_sort(L)) |
参考: https://www.cnblogs.com/wangbin2188/p/6520560.html
以上运行环境为: python3.7.0 win10
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?