帮大家读懂TThread类
帮大家读懂TThread类
TThread类在Delphi的RTL里算是比较简单的类,类成员也不多,类属性都很简单明白,本文将只对几个比较重要的类成员方法和唯一的事件:OnTerminate作详细分析。 首先就是构造函数:
constructor TThread.Create(CreateSuspended: Boolean); begin inherited Create; AddThread; FSuspended := CreateSuspended; FCreateSuspended := CreateSuspended; FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID); if FHandle = 0 then raise EThread.CreateResFmt(@SThreadCreateError, [SysErrorMessage(GetLastError)]); end; 虽然这个构造函数没有多少代码,但却可以算是最重要的一个成员,因为线程就是在这里被创建的。 在通过Inherited调用TObject.Create后,第一句就是调用一个过程:AddThread,其源码如下: procedure AddThread; begin InterlockedIncrement(ThreadCount); end; 同样有一个对应的RemoveThread: procedure RemoveThread; begin InterlockedDecrement(ThreadCount); end; 它们的功能很简单,就是通过增减一个全局变量来统计进程中的线程数。只是这里用于增减变量的并不是常用的Inc/Dec过程,而是用了InterlockedIncrement/InterlockedDecrement这一对过程,它们实现的功能完全一样,都是对变量加一或减一。但它们有一个最大的区别,那就是InterlockedIncrement/InterlockedDecrement是线程安全的。即它们在多线程下能保证执行结果正确,而Inc/Dec不能。或者按操作系统理论中的术语来说,这是一对“原语”操作。
接下来最重要就是这句了: FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID);
BeginThread,它有很多参数,关键的是第三、四两个参数。第三个参数就是前面说到的线程函数,即在线程中执行的代码部分。第四个参数则是传递给线程函数的参数,在这里就是创建的线程对象(即Self)。其它的参数中,第五个是用于设置线程在创建后即挂起,不立即执行(启动线程的工作是在AfterConstruction中根据CreateSuspended标志来决定的),第六个是返回线程ID。 现在来看TThread的核心:线程函数ThreadProc。特别要注意的是ThreadProc这个线程类的核心不是线程的成员,而是一个全局函数(因为BeginThread过程的参数约定只能用全局函数)。下面是它的代码:
function ThreadProc(Thread: TThread): Integer; var FreeThread: Boolean; begin try if not Thread.Terminated then try Thread.Execute; except Thread.FFatalException := AcquireExceptionObject; end; finally FreeThread := Thread.FFreeOnTerminate; Result := Thread.FReturnValue; Thread.DoTerminate; Thread.FFinished := True; SignalSyncEvent; if FreeThread then Thread.Free; EndThread(Result); end; end;
虽然也没有多少代码,但却是整个TThread中最重要的部分,因为这段代码是真正在线程中执行的代码。下面对代码作逐行说明: 1、首先判断线程类的Terminated标志,如果未被标志为终止,则调用线程类的Execute方法执行线程代码,因为TThread是抽象类,Execute方法是抽象方法,所以本质上是执行派生类中的Execute代码。 2、Execute就是线程类中的线程函数,所有在Execute中的代码都需要当作线程代码来考虑,如防止访问冲突等。 3、如果Execute发生异常,则通过AcquireExceptionObject取得异常对象,并存入线程类的FFatalException成员中。 4、最后是线程结束前做的一些收尾工作。局部变量FreeThread记录了线程类的FreeOnTerminated属性的设置,然后将线程返回值设置为线程类的返回值属性的值。 5、接下来执行线程类的DoTerminate方法。 DoTerminate方法的代码如下:
procedure TThread.DoTerminate; begin if Assigned(FOnTerminate) then Synchronize(CallOnTerminate); //一定要注意这里是用同步主线程的形式来调用的 end;
很简单,就是通过Synchronize来调用CallOnTerminate方法,而CallOnTerminate方法的代码如下,就是简单地调用OnTerminate事件:
procedure TThread.CallOnTerminate; begin if Assigned(FOnTerminate) then FOnTerminate(Self); end;
因为OnTerminate事件是在Synchronize中执行的,所以本质上它并不是线程代码,而是主线程代码(具体见后面对Synchronize的分析)。 执行完OnTerminate后,将线程类的FFinished标志设置为True。 接下来执行SignalSyncEvent过程,其代码如下:
procedure SignalSyncEvent; begin SetEvent(SyncEvent); end;
6、SignalSyncEvent也很简单,就是设置一下一个全局Event:SyncEvent,关于Event的使用,而SyncEvent的用途将在WaitFor过程中说明。 7、然后根据FreeThread中保存的FreeOnTerminate设置决定是否释放线程类,在线程类释放时,还有一些些操作,详见接下来的析构函数实现。 8、最后调用EndThread结束线程,返回线程返回值。 至此,线程完全结束。
说完构造函数,再来看析构函数: destructor TThread.Destroy; begin if (FThreadID <> 0) and not FFinished then begin Terminate; if FCreateSuspended then Resume; WaitFor; end; RemoveQueuedEvents(Self, nil); if FHandle <> 0 then CloseHandle(FHandle); //关闭线程Handle inherited Destroy; FFatalException.Free; RemoveThread; end;
在线程对象被释放前,首先要检查线程是否还在执行中,如果线程还在执行中(线程ID不为0,并且线程结束标志未设置),则调用Terminate过程结束线程。Terminate过程只是简单地设置线程类的Terminated标志,如下面的代码:
procedure TThread.Terminate; begin FTerminated := True; end;
线程结束后,关闭线程Handle(正常线程创建的情况下Handle都是存在的),释放操作系统创建的线程对象。 然后调用TObject.Destroy释放本对象,并释放已经捕获的异常对象, 最后调用RemoveThread减小进程的线程数。
至此我们知道了线程要结束必须等待线程的Execute方法执行完毕,所以一般来说,要让你的线程能够尽快终止,必须在Execute方法中在较短的时间内不断地检查Terminated标志,以便能及时地退出。这是设计线程代码的一个很重要的原则!
接下来我们讲讲线程同步的一些方法: 1、事件(Event),可以这么理解Event其实相当于一个全局的布尔变量。它有两个赋值操作:Set和Reset,相当于把它设置为True或False。而检查它的值是通过WaitFor操作进行。对应在Windows平台上,是三个API函数:SetEvent、ResetEvent、WaitForSingleObject(实现WaitFor功能的API还有几个,这是最简单的一个)。这三个都是原语操作,所以Event可以实现一般布尔变量不能实现的在多线程中的应用。Set和Reset的功能比较简单,现在来说一下WaitFor的功能: WaitFor的功能是检查Event的状态是否是Set状态(相当于True),如果是则立即返回,如果不是,则等待它变为Set状态,在等待期间,调用WaitFor的线程处于挂起状态。另外WaitFor有一个参数用于超时设置,如果此参数为0,则不等待,立即返回Event的状态,如果是INFINITE则无限等待,直到Set状态发生,若是一个有限的数值,则等待相应的毫秒数后返回Event的状态。 当Event从Reset状态向Set状态转换时,唤醒其它由于WaitFor这个Event而挂起的线程。
2、临界区(CriticalSection)则是一项共享数据访问保护的技术。它其实也是相当于一个全局的布尔变量。但对它的操作有所不同,它只有两个操作:Enter和Leave,同样可以把它的这两个状态当作True和False,分别表示现在是否处于临界区中。这两个操作也是原语,所以它可以用于在多线程应用中保护共享数据,防止访问冲突。 用临界区保护共享数据的方法很简单:在每次要访问共享数据之前调用Enter设置进入临界区标志,然后再操作数据,最后调用Leave离开临界区。它的保护原理是这样的:当一个线程进入临界区后,如果此时另一个线程也要访问这个数据,则它会在调用Enter时,发现已经有线程进入临界区,然后此线程就会被挂起,等待当前在临界区的线程调用Leave离开临界区,当另一个线程完成操作,调用Leave离开后,此线程就会被唤醒,并设置临界区标志,开始操作数据,这样就防止了访问冲突。 3、最后要说明一点,Event和CriticalSection都是操作系统资源,使用前都需要创建,使用完后也同样需要释放。如TThread类用到的一个全局Event:SyncEvent和全局CriticalSection:TheadLock,都是在InitThreadSynchronization和DoneThreadSynchronization中进行创建和释放的,而它们则是在Classes单元的Initialization和Finalization中被调用的。 4、由于在TThread中都是用API来操作Event和CriticalSection的,所以前面都是以API为例,其实Delphi已经提供了对它们的封装,在SyncObjs单元中,分别是TEvent类和TCriticalSection类。用法也与前面用API的方法相差无几。因为TEvent的构造函数参数过多,为了简单起见,Delphi还提供了一个用默认参数初始化的Event类:TSimpleEvent。
OK, 有了前面对Event和CriticalSection的准备知识,可以正式开始讨论Synchronize和WaitFor了。 我们知道,Synchronize是通过将部分代码放到主线程中执行来实现线程同步的,因为在一个进程中,只有一个主线程。先来看看Synchronize的实现:
procedure TThread.Synchronize(AMethod: TThreadMethod); begin FSynchronize.FThread := Self; FSynchronize.FSynchronizeException := nil; FSynchronize.FMethod := AMethod; Synchronize(@FSynchronize); //调用重载版本 end;
其中FSynchronize是一个记录类型: PSynchronizeRecord = ^TSynchronizeRecord; TSynchronizeRecord = record FThread: TObject; FMethod: TThreadMethod; FSynchronizeException: TObject; end;
TsynchronizeRecord记录类型是非常重要的:用于进行线程和主线程之间进行数据交换,包括传入线程类对象,同步方法及发生的异常。
在Synchronize中调用了它的一个重载版本,而且这个重载版本比较特别,它是一个“类方法”。 所谓类方法,是一种特殊的类成员方法,它的调用并不需要创建类实例,而是像构造函数那样,通过类名调用。 之所以会用类方法来实现它,是因为为了可以在线程对象没有创建时也能调用它。 下面是这个Synchronize的代码:
class procedure TThread.Synchronize(ASyncRec: PSynchronizeRecord; QueueEvent: Boolean = False); var SyncProc: TSyncProc; SyncProcPtr: PSyncProc; begin if GetCurrentThreadID = MainThreadID then //判断线程是否是主线程 ASyncRec.FMethod else begin if QueueEvent then New(SyncProcPtr) else SyncProcPtr := @SyncProc; if not QueueEvent then SyncProcPtr.Signal := CreateEvent(nil, True, False, nil) else SyncProcPtr.Signal := 0; try EnterCriticalSection(ThreadLock); try SyncProcPtr.Queued := QueueEvent; if SyncList = nil then SyncList := TList.Create; SyncProcPtr.SyncRec := ASyncRec; SyncList.Add(SyncProcPtr);
//与CheckSynchronize里的ResetSyncEvent相对应,在Linux下才有用。 //当前线程如果被主线程WaitFor 这句也是很关键的,它使MsgWaitForMultipleObjects能够返回 SignalSyncEvent; //注意SyncEvent是定义在Classes.pas单元的全局变量:SyncEvent: THandle;
if Assigned(WakeMainThread) then WakeMainThread(SyncProcPtr.SyncRec.FThread); //投递完消息后会调用CheckSynchronize,而CheckSynchronize又会用到ThreadLock if not QueueEvent then begin LeaveCriticalSection(ThreadLock); //这里请大家注意了,调用WaitForSingleObject前先退出临界区,目的就是防止线程死锁 try WaitForSingleObject(SyncProcPtr.Signal, INFINITE); finally EnterCriticalSection(ThreadLock); end; end; finally LeaveCriticalSection(ThreadLock); end; finally if not QueueEvent then CloseHandle(SyncProcPtr.Signal); end; if not QueueEvent and Assigned(ASyncRec.FSynchronizeException) then raise ASyncRec.FSynchronizeException; end; end;
这段代码略多一些,不过也不算太复杂。 1、首先是判断当前线程是否是主线程,如果是,则简单地执行同步方法后返回。 如果不是主线程,则准备开始同步过程。 通过局部变量SyncProc记录在线程之前交换数据(参数)和一个Event Handle,其记录结构如下: TSyncProc = record SyncRec: PSynchronizeRecord; Signal: THandle; end;
2、然后创建一个Event,接着进入临界区,然后就是把这个记录数据存入SyncList这个列表中(如果这个列表不存在的话,则创建它)。可见ThreadLock这个临界区就是为了保护对SyncList的访问,这一技巧在后面介绍CheckSynchronize时会再次看到。
3、再接下就是调用SignalSyncEvent,其代码在前面介绍TThread的构造函数时已经介绍过了,它的功能就是简单地将SyncEvent作一个Set的操作。关于这个SyncEvent的用途,将在后面介绍WaitFor时再详述。 4、接下来就是最主要的部分了:调用WakeMainThread事件进行同步操作。WakeMainThread在Tthread线程里并没有实现它,那它是来自哪里呢??大家可以用搜索的方法喽,可以找到是在Forms单元里进行的设置,如下两个过程:
procedure TApplication.HookSynchronizeWakeup; begin Classes.WakeMainThread := WakeMainThread; end;
procedure TApplication.UnhookSynchronizeWakeup; begin Classes.WakeMainThread := nil; end;
上面两个方法分别是在TApplication类的构造函数和析构函数中被调用。 这就是在Application对象中WakeMainThread事件响应的代码,消息就是在这里被发出的,它利用了一个空消息来实现:
procedure TApplication.WakeMainThread(Sender: TObject); begin PostMessage(Handle, WM_NULL, 0, 0); end;
WakeMainThread是一个TNotifyEvent类型的全局事件。这里之所以要用事件进行处理,是因为Synchronize方法本质上是通过消息,将需要同步的过程放到主线程中执行,如果在一些没有消息循环的应用中(如Console或DLL)是无法使用的,所以要使用这个事件进行处理。
5、同时这个消息的响应也是在Application对象中实现的,见下面的代码(删除无关的部分): procedure TApplication.WndProc(var Message: TMessage); … begin try … with Message do case Msg of … WM_NULL: CheckSynchronize; … except HandleException(Self); end; end; 其中的CheckSynchronize也是定义在Classes单元中的,由于它比较复杂,我们后面再来讲,现在只要知道它是具体处理Synchronize功能的部分就好,现在继续分析Synchronize的代码。 6、在执行完WakeMainThread事件后,就退出临界区,然后调用WaitForSingleObject开始等待在进入临界区前创建的那个Event。这个Event的功能是等待这个同步方法的执行结束,关于这点,在后面分析CheckSynchronize时会再说明。 7、最后释放开始时创建的Event,如果被同步的方法返回异常的话,还会在这里再次抛出异常。 8、接下来来讲前面没讲的那个CheckSynchronize,见下面的代码:
function CheckSynchronize(Timeout: Integer = 0): Boolean; var SyncProc: PSyncProc; LocalSyncList: TList; begin if GetCurrentThreadID <> MainThreadID then raise EThread.CreateResFmt(@SCheckSynchronizeError, [GetCurrentThreadID]); if Timeout > 0 then WaitForSyncEvent(Timeout) else ResetSyncEvent; //注意SyncEvent是定义在Classes.pas单元的全局变量:SyncEvent: THandle; LocalSyncList := nil; EnterCriticalSection(ThreadLock); //进入临界区 try Integer(LocalSyncList) := InterlockedExchange(Integer(SyncList), Integer(LocalSyncList)); try Result := (LocalSyncList <> nil) and (LocalSyncList.Count > 0); if Result then begin while LocalSyncList.Count > 0 do begin SyncProc := LocalSyncList[0]; //终于在这里进行线程间的信息传递了 LocalSyncList.Delete(0); LeaveCriticalSection(ThreadLock); try try SyncProc.SyncRec.FMethod; //执行同步方法 except if not SyncProc.Queued then SyncProc.SyncRec.FSynchronizeException := AcquireExceptionObject else raise; end; finally EnterCriticalSection(ThreadLock); end; if not SyncProc.Queued then SetEvent(SyncProc.Signal) //通知线程提交过来的需要同步的方法已经执行完了 else begin Dispose(SyncProc.SyncRec); Dispose(SyncProc); end; end; end; finally LocalSyncList.Free; end; finally LeaveCriticalSection(ThreadLock); end; end;
1、首先,这个方法必须在主线程中被调用(如前面通过消息传递到主线程),否则就抛出异常。 2、接下来调用ResetSyncEvent(它与前面SetSyncEvent对应的,之所以不考虑WaitForSyncEvent的情况,是因为只有在Linux版下才会调用带参数的CheckSynchronize,Windows版下都是调用默认参数0的CheckSynchronize)。 3、现在可以看出SyncList的用途了:它是用于记录所有未被执行的同步方法的。因为主线程只有一个,而子线程可能有很多个,当多个子线程同时调用同4、接下来看对同步方法的处理:首先是从列表中移出(取出并从列表中删除)第一个同步方法调用数据。然后退出临界区(原因当然也是为了防止死锁)。 接着就是真正的调用同步方法了。如果同步方法中出现异常,将被捕获后存入同步方法数据记录中。 5、重新进入临界区后,调用SetEvent通知调用线程,同步方法执行完成了(详见前面Synchronize中的WaitForSingleObject调用)。
至此,整个Synchronize过程的实现介绍完成。
最后来说一下WaitFor,它的功能就是等待线程执行结束。其代码如下:
function TThread.WaitFor: LongWord; var H: array[0..1] of THandle; WaitResult: Cardinal; Msg: TMsg; begin H[0] := FHandle; if GetCurrentThreadID = MainThreadID then begin WaitResult := 0; H[1] := SyncEvent; //注意SyncEvent是定义在Classes.pas单元的全局变量:SyncEvent: THandle; repeat { This prevents a potential deadlock if the background thread does a SendMessage to the foreground thread } if WaitResult = WAIT_OBJECT_0 + 2 then PeekMessage(Msg, 0, 0, 0, PM_NOREMOVE); WaitResult := MsgWaitForMultipleObjects(2, H, False, 1000, QS_SENDMESSAGE); //这里很重要 CheckThreadError(WaitResult <> WAIT_FAILED); if WaitResult = WAIT_OBJECT_0 + 1 then CheckSynchronize; //有线程进入同步的时候会调用 until WaitResult = WAIT_OBJECT_0; end else WaitForSingleObject(H[0], INFINITE); CheckThreadError(GetExitCodeThread(H[0], Result)); end;
1、如果不是在主线程中执行WaitFor的话,很简单,只要调用WaitForSingleObject等待此线程的Handle为Signaled状态即可。 2、如果是在主线程中执行WaitFor则比较麻烦。首先要在Handle数组中增加一个SyncEvent,然后循环等待,直到线程结束(即MsgWaitForMultipleObjects返回WAIT_OBJECT_0,详见MSDN中关于此API的说明)。 3、在循环等待中作如下处理:如果有消息发生,则通过PeekMessage取出此消息(但并不把它从消息循环中移除),然后调用MsgWaitForMultipleObjects来等待线程Handle或SyncEvent出现Signaled状态,同时监听消息(QS_SENDMESSAGE参数,详见MSDN中关于此API的说明)。可以把此API当作一个可以同时等待多个Handle的WaitForSingleObject。如果是SyncEvent被SetEvent(返回WAIT_OBJECT_0 + 1),则调用CheckSynchronize处理同步方法。 4、为什么在主线程中调用WaitFor必须用MsgWaitForMultipleObjects,而不能用WaitForSingleObject等待线程结束呢?因为防止死锁。由于在线程函数Execute中可能调用Synchronize处理同步方法,而同步方法是在主线程中执行的,如果用WaitForSingleObject等待的话,则主线程在这里被挂起,同步方法无法执行,导致线程也被挂起,于是发生死锁。而改用WaitForMultipleObjects则没有这个问题。因为:它的第三个参数为False,表示只要线程Handle或SyncEvent中只要有一个Signaled即可使主线程被唤醒,至于加上QS_SENDMESSAGE是因为Synchronize是通过消息传到主线程来的,所以还要防止消息被阻塞。这样,当线程中调用Synchronize时,主线程就会被唤醒并处理同步调用,在调用完成后继续进入挂起等待状态,直到线程结束。
至此,对线程类TThread的分析可以告一个段落了。 https://www.cnblogs.com/AnyDelphi/archive/2010/11/07/1871045.html
|
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
2015-10-01 Linux下配置QT环境
2015-10-01 Linux下快速静态编译Qt以及Qt动态/静态版本共存(提供了编译4.6,5.6的精通编译脚本,并且apt-get install 需要的库也全列出来了。还有分析问题的心理过程)good
2015-10-01 Ubuntu下Qt-4.7.1的静态编译
2015-10-01 在VC中检测内存泄漏
2015-10-01 GUI(主)线程与子线程之间的通信(用信号槽通讯)
2015-10-01 最简单的显示图片方法
2015-10-01 在QT程序中使用cout和cin