第三次作业学习

代码练习

1. Lb1

卷积神经网络(CNN), 典型的卷积神经网络主要由卷积层、池化层、全连接层组成,在本次代码学习中,主要学习卷积层和池化层的作用。

1.1 模型代码

plt.figure(figsize=(8, 5))
for i in range(20):``
plt.subplot(4, 5, i + 1)
image, _ = train_loader.dataset.__getitem__(i)
plt.imshow(image.squeeze().numpy(),'gray')
plt.axis('off');

创建CNN网络

class FC2Layer(nn.Module):
  	def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x

定义训练和测试函数

# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

在全连接网络上测试

n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)

在卷积神经网络上测试

# Training settings 
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)

打乱像素顺序再次在两个网络上训练与测试

# 这里解释一下 torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

修改训练和测试函数

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

进行测试和训练
perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)

1.2截图

avatar

两者结果对比,可以很明显发现卷积神经网络的正确率高于全连接.在相同的参数的情况下,CNN运行时间较长,预估可能是数据太小没法体现CNN的优势,或是参数选择上不对。

在不能卷积和池化的情况下,全连接和卷积的的训练测试结果

2. Lab2

2.1 模型代码

预先准备好数据训练集和测试集,这里的Dataloader中num_work表示工作进程数,实行多进程导入数据


	device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
	
	transform_train = transforms.Compose([
	    transforms.RandomCrop(32, padding=4),
	    transforms.RandomHorizontalFlip(),
	    transforms.ToTensor(),
	    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
	
	transform_test = transforms.Compose([
	    transforms.ToTensor(),
	    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
	
	trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
	testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
	
	trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
	testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
	
	classes = ('plane', 'car', 'bird', 'cat',
	           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

建模


	class VGG(nn.Module):
	    def __init__(self):
	        super(VGG, self).__init__()
	        self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
	        self.features = self._make_layers(self.cfg)
	        self.classifier = nn.Linear(512, 10)   #Error element
	
	    def forward(self, x):
	        out = self.features(x)
	        out = out.view(out.size(0), -1)
	        out = self.classifier(out)
	        return out
	
	    def _make_layers(self, cfg):
	        layers = []
	        in_channels = 3
	        for x in cfg:
	            if x == 'M':
	                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
	            else:
	                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
	                           nn.BatchNorm2d(x),
	                           nn.ReLU(inplace=True)]
	                in_channels = x
	        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
	        return nn.Sequential(*layers)

训练


	for epoch in range(10):  # 重复多轮训练
	    for i, (inputs, labels) in enumerate(trainloader):
	        inputs = inputs.to(device)
	        labels = labels.to(device)
	        # 优化器梯度归零
	        optimizer.zero_grad()
	        # 正向传播 + 反向传播 + 优化 
	        outputs = net(inputs)
	        loss = criterion(outputs, labels)
	        loss.backward()
	        optimizer.step()
	        # 输出统计信息
	        if i % 100 == 0:   
	            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))
	
	print('Finished Training')

	correct = 0
	total = 0
	
	for data in testloader:
	    images, labels = data
	    images, labels = images.to(device), labels.to(device)
	    outputs = net(images)
	    _, predicted = torch.max(outputs.data, 1)
	    total += labels.size(0)
	    correct += (predicted == labels).sum().item()
	
	print('Accuracy of the network on the 10000 test images: %.2f %%' % (
	    100 * correct / total))

2.2截图


3. Lab3

3.1模型代码


	import torch
	import torchvision
	import torchvision.transforms as transforms
	import matplotlib.pyplot as plt
	import numpy as np
	import torch.nn as nn
	import torch.nn.functional as F
	import torch.optim as optim
	
	# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
	device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
	
	transform = transforms.Compose(
	    [transforms.ToTensor(),
	     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
	
	# 注意下面代码中:训练的 shuffle 是 True,测试的 shuffle 是 false
	# 训练时可以打乱顺序增加多样性,测试是没有必要
	trainset = torchvision.datasets.CIFAR10(root='./data', train=True,     download=True, transform=transform)
	trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True,num_workers=2)
	
	testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)
	testloader = torch.utils.data.DataLoader(testset, batch_size=8,shuffle=False,num_workers=2)
	
	classes = ('plane', 'car', 'bird', 'cat','deer','dog', 'frog', 'horse', 'ship', 'truck')

展示一些图片


	def imshow(img):
	    plt.figure(figsize=(8,8))
	    img = img / 2 + 0.5     # 转换到 [0,1] 之间
	    npimg = img.numpy()
	    plt.imshow(np.transpose(npimg, (1, 2, 0)))
	    plt.show()
	
	# 得到一组图像
	images, labels = iter(trainloader).next()
	# 展示图像
	imshow(torchvision.utils.make_grid(images))
	# 展示第一行图像的标签
	for j in range(8):
	    print(classes[labels[j]])

定义网络,损失函数和优化器:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

训练网络

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

网络识别图片情况

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

3.2 截图

图片展示

训练情况

训练结果,只有62%,正确率并不高

二、想法解读

1

CNN较全连接的优势在于能够有效的将大数据量的图片降维成小数据量
和能够有效的保留图片特征,符合图片处理的原则。
其中卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维),在相同数据的参数的情况下,CNN明显优于全连接。
但是让卷积和池化难以发挥作用时,就无法体现CNN的优越性了。

2

需要进行纠正的是,在class VGG中,图片此处的代码需要更改

模型代码的参数是2048和10,需要改成512和0.因为此处矩阵的size应该是512,后面的10是总共需要的标签数量总值。

3

CNN对CIFAR10数据集进行识别,模型代码正确率并不高。
经查阅,可以使用数据加强如对图形进行高斯噪音处理的方法,提高正确率。
自己的错误尝试,更改训练次数,将模型中的10次加到20次,除了增加运行时间,并没有改变运行正确率。

posted @ 2021-10-15 23:02  seems_happy  阅读(48)  评论(0编辑  收藏  举报