**************input**************

[[[[-0.36166722  0.04847232  1.20818889 -0.1794038  -0.53244466]

   [-0.67821187 -1.81838071  0.59005165 -1.17246294  0.33203208]

   [-0.18631086 -0.68608224  0.07464688  0.28875718 -0.86492658]]

 

  [[ 1.63322294  0.99059737  0.5923292  -0.80913633 -2.2539773 ]

   [ 0.14436921 -0.45454684 -0.61321616 -1.01231539  1.54901564]

   [ 0.38690856  1.84936357  0.55067211  0.3163861  -0.62082398]]

 

  [[ 0.3655189   1.96013069  0.91159737  1.89106071  2.04635859]

   [-1.13240027 -1.64421642 -1.23379624 -0.18057458 -0.37131071]

   [-0.55824232  0.5738467  -1.02291656  0.8829596  -2.15986562]]]]

(1, 3, 3, 5)

*****************filter*************

[[[[ 0.43657559  1.01129627]

   [ 0.30303505  1.57386982]

   [ 0.63144618 -0.38221657]

   [ 1.03055692  0.27556673]

   [ 0.14717487 -0.47002205]]]]

(1, 1, 5, 2)

***************result************

[[[[ 0.35645172 -0.55043042]

   [-1.63396096 -4.25244951]

   [-0.07182495 -0.81064451]]

 

  [[ 0.22164512  3.82079363]

   [-1.27720094 -1.34204817]

   [ 1.31174088  3.47044706]]

 

  [[ 3.57920766  2.66549063]

   [-2.0124495  -3.1366334 ]

   [-0.12367389  1.98808599]]]]

(1, 3, 3, 2)

import tensorflow as tf
input = tf.Variable(tf.random_normal([1,3,3,5]));
filter = tf.Variable(tf.random_normal([1,1,5,2]));
op = tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='VALID');
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables());
    result=sess.run(op);
    print('**************input**************');
    print(sess.run(input));
    print(input.shape);
    print('*****************filter*************');
    print(sess.run(filter));
    print(filter.shape);
    print('***************result************');
    print(result);
    print(result.shape);

 

 

posted on 2017-10-06 20:41  finallyly  阅读(703)  评论(0编辑  收藏  举报