什么是数据可视化
一个好的可视化,能够带给人们不仅仅是视觉上的冲击,还能够揭示蕴含在数据中的规律和道理。下面就总结一下可视化的基础概念。
【可视化的意义】
可视化的终极目标是洞悉蕴含在数据中的现象和规律,这里面有多重含义:发现、决策、解释、分析、探索和学习。
简明定义是:通过可视表达增强人们完成某些任务的效率
可以化的意义在于,可视化作为人脑的辅助工具,可以替我们保留一部分信息,好记性不如烂笔头。其次,图形化的符号可以将用户的注意力引导到重要的目标。
【可视化的目标和作用】
传统的可视化可以大致分为探索性可视化和解释性可视化,按照应用来分,可视化有多个目标:
- 有效呈现重要特征
- 揭示客观规律
- 辅助理解事物概念和过程
- 对模拟和测量进行质量监控
- 提高科研开发效率
- 促进沟通交流和合作
按照宏观的角度看,可视化的三个功能:
- 信息记录
- 信息推理和分析
- 信息传播与协同
【数据可视化分类】
数据可视化包含三个分支,科学可视化(Sci Vis, Scientific Visualization )和信息可视化(Info Vis, Information Visualization),以及后来演化出第三个分支:可视分析(VAST, Visual Analytics Science and Technology)这个从IEEE VIS 会议的分类中可以看出来。
(1)科学可视化面向的是科学和工程领域数据,比如空间坐标和几何信息的三维空间测量数据、计算机仿真数据、医学影像数据,重点探索如何以几何、拓扑和形状特征来呈现数据中蕴含的规律。
(2)信息可视化的处理对象是非结构化、非几何的抽象数据,如金融交易、社交网络和文本数据,其核心挑战是针对大尺度高维复杂数据如何减少视觉混淆对信息的干扰。
(3)可视分析:近几年来,随着人工智能的兴起,人们逐渐发现其实一些机器能比人做得更好的事情,同时也发现了一些事情需要借助人类 3 亿年的进化本领。所以将可视化与分析进行结合,产生了一个新的学科:可视分析学。
可视分析学被定义为由可视交互界面为基础的分析推理科学,将图形学、数据挖掘、人机交互等技术融合在一起,形成人脑智能和机器智能优势互补和相互提升。
【优势】
数据可视化,就是指将结构或非结构数据转换成适当的可视化图表,然后将隐藏在数据中的信息直接展现于人们面前。那数据可视化的优势在于合成呢?在可视化图表工具的表现形式方面,图表类型表现的更加多样化,丰富化。除了传统的饼图、柱状图、折线图等常见图形,还有气泡图、面积图、省份地图、词云、瀑布图、
漏斗图等酷炫图表,甚至还有GIS地图。这些种类繁多的图形能满足不同的展示和分析需求。
①计量图:直观显示数据完成的进度;
②折线图:看数据的变动走势;
③柱状图:直观展示对应的数据、可以对比多维度的数值;
.
.