数据挖掘中的算法

原文地址:http://blog.csdn.net/taigw/article/details/19407297

 

2006年的ICDM(the IEEE International Conference on Data Mining) 上,评选出了数据挖掘领域的十大算法,分别是

1,C4.5

    C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。

    C4.5由J.Ross Quinlan在ID3的基础上提出的。ID3算法用来构造决策树。决策树是一种类似流程图的树结构,其中每个内部节点(非树叶节点)表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点存放一个类标号。一旦建立好了决策树,对于一个未给定类标号的元组,跟踪一条有根节点到叶节点的路径,该叶节点就存放着该元组的预测。决策树的优势在于不需要任何领域知识或参数设置,适合于探测性的知识发现。

    文章:Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

    代码实现 

2,k-Means

    k-means 算法是一种得到最广泛使用的基于划分的聚类算法,把n个对象分为k个簇,以使簇内具有较高的相似度。相似度的计算根据一个簇中对象的平均值来进行。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。

    算法首先随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇,然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。

    K-Means聚类算法及实现代码

3,SVM

    支持向量机,SVM(Support Vector Machine),是一种监督式学习的方法,可广泛用于统计分类和回归分析。

    支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。

    文章:Christopher J. C. Burges. "A Tutorial on Support Vector Machines for Pattern Recognition". Data Mining and Knowledge Discovery 2:121 - 167, 1998

    算法实现

4,Apriori

    Apriori算法用于处理关联式规则的问题,关联式规则(Association Rules, AR),是数据挖掘的一个重要课题,用于从大量数据中挖掘出有价值的数据项之间的相关关系。关联规则解决的常见问题如:“如果一个消费者购买了产品A,那么他有多大机会购买产品B?”以及“如果他购买了产品C和D,那么他还将购买什么产品?”

    Apriori算法是种最有影响的挖掘布尔关联规则频繁项集的算法。它的核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集(简称频集),也常称为最大项目集。
    在Apriori算法中,寻找最大项目集(频繁项集)的基本思想是:算法需要对数据集进行多步处理。第一步,简单统计所有含一个元素项目集出现的频数,并找出那些不小于最小支持度的项目集,即一维最大项目集。从第二步开始循环处理直到再没有最大项目集生成。循环过程是:第k步中,根据第k-1步生成的(k-1)维最大项目集产生k维侯选项目集,然后对数据库进行搜索,得到侯选项目集的项集支持度,与最小支持度进行比较,从而找到k维最大项目集。
    Java代码

5,EM期望值最大化算法,Expectation Maximization Algorithm

    在统计计算中,EM算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

   文章:Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm".Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977

   算法详解以及源码

6,PageRank

    PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。Google的创始人拉里·佩奇和谢尔盖·布林于1998年在斯坦福大学发明了这项技术。

    详解

7,AdaBoost

    Adaboost也是一种原理简单,但很实用的有监督机器学习算法,它是adaptive boosting的简称。说到boosting算法,就不得提一提bagging算法,他们两个都是把一些弱分类器组合起来来进行分类的方法,统称为集成方法(ensemble method),类似于投资,“不把鸡蛋放在一个篮子”,虽然每个弱分类器分类的不那么准确,但是如果把多个弱分类器组合起来可以得到相当不错的结果,另外要说的是集成方法还可以组合不同的分类器,而Adaboost和boosting算法的每个弱分类器的类型都一样的。他们两个不同的地方是:boosting的每个弱分类器组合起来的权重不一样,本节的Adaboost就是一个例子,而bagging的每个弱分类器的组合权重是相等,代表的例子就是random forest。Random forest的每个弱分类器是决策树,输出的类别有多个决策树分类的类别的众数决定。

    详解

8,kNN

     K最近邻(k-Nearest Neighbor,KNN)分类算法,是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。

    matlab代码

9,Naive Bayes

   朴素贝叶斯分类器:贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概4英寸等特征,该水果可以被判定为是苹果。

   尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换而言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

   基于朴素贝叶斯分类器的文本分类

10,CART

   分类和回归树(Classification And Regression Tree)s,是决策树中的一种方法。

   Decision Tree包括以下几个部分:

  •Root:根节点,Decision Tree使用了树的概念,必然有Root属性。 
  •Decision Node:判定节点,该节点的数据会继续根据数据属性继续进行判定。 
  •Branch:从Decision Node迭代生成的子树是子树根节点的一个属性判断 
  •End Node:也称为Leaf Node,该节点实际上是做出决定的节点,对于样本属性的判断到Leaf Node结束。 
   Decision Tree分类:

   Classification Tree:测试数据经过Classification Tree处理后,看结果归属于那个类别(Class)。

   Regression Tree:如果测试数据的输出是数值类型,可以考虑使用Regression Tree。

  CART算法是对上面两种算法的术语涵盖。用来回归的树(Regression Tree)和用来分类的树(classification Tree)具有一定的相似性,不过其不同之处在于决定分裂(Split)的过程。

   详细

   机器学习(龙星计划):http://bigeye.au.tsinghua.edu.cn/DragonStar2012/download.html

posted @ 2014-12-10 10:15  雄哼哼  阅读(337)  评论(0编辑  收藏  举报