Loading

POJ 3155:Hard Life(最大密度子图)

题目链接

题意

给出n个人,和m对有冲突的人。要裁掉一些人,使得冲突率最高,冲突率为存在的冲突数/人数。

思路

题意可以转化为,求出一些边,使得|E|/|V|最大,这种分数规划叫做最大密度子图。

学习

建图

对于每个边,依赖于点,可以转化为最大权闭合子图来求解。

最大密度子图: max(|E|/|V|)
分数规划
k = |E|/|V|
h(g) = E - V * g
边依赖于点
转化为最大权闭合图
二分点权即g
h(g)为递减函数
当h(g) < 0,不合法,要减小g
当h(g) > 0,说明存在更优解,要增大g
当h(g) = 0,得到最优解

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int N = 1111;
const double eps = 1e-8;
const double inf = 1000000000;
const int INF = 0x3f3f3f3f;
struct Edge {
    int u, v, nxt; double cap;
} edge[N*8];
int head[N], tot, dis[N], vis[N], gap[N], pre[N], cur[N], S, T, n, m;
pii p[N];
vector<int> ans;
/*
最大密度子图: max(|E|/|V|)
分数规划
k = |E|/|V|
h(g) = E - V * g
边依赖于点
转化为最大权闭合图
二分点权即g
h(g)为递减函数
当h(g) < 0,不合法,要减小g
当h(g) > 0,说明存在更优解,要增大g
当h(g) = 0,得到最优解
*/

void Add(int u, int v, double cap) {
    edge[tot] = (Edge) { u, v, head[u], cap }; head[u] = tot++;
    edge[tot] = (Edge) { v, u, head[v], 0 }; head[v] = tot++;
}

void BFS(int T) {
    queue<int> que;
    memset(dis, INF, sizeof(dis));
    memset(gap, 0, sizeof(gap));
    dis[T] = 0; gap[0]++; que.push(T);
    while(!que.empty()) {
        int u = que.front(); que.pop();
        for(int i = head[u]; ~i; i = edge[i].nxt) {
            int v = edge[i].v;
            if(dis[v] == INF) {
                dis[v] = dis[u] + 1;
                gap[dis[v]]++;
                que.push(v);
            }
        }
    }
}

double ISAP(int S, int T, int n) {
    BFS(T);
    memcpy(cur, head, sizeof(cur));
    int u = pre[S] = S, index, i;
    double flow, ans = 0;
    while(dis[S] < n) {
        if(u == T) {
            flow = inf; index = u;
            for(u = S; u != T; u = edge[cur[u]].v)
                if(flow > edge[cur[u]].cap) flow = edge[cur[u]].cap, index = u;
            for(u = S; u != T; u = edge[cur[u]].v)
                edge[cur[u]].cap -= flow, edge[cur[u]^1].cap += flow;
            ans += flow; u = index;
        }
        for(i = cur[u]; ~i; i = edge[i].nxt)
            if(dis[edge[i].v] == dis[u] - 1 && edge[i].cap > 0) break;
        if(~i) {
            cur[u] = i; pre[edge[i].v] = u; u = edge[i].v;
        } else {
            int md = n + 1;
            if(--gap[dis[u]] == 0) break;
            for(i = head[u]; ~i; i = edge[i].nxt)
                if(dis[edge[i].v] < md && edge[i].cap > 0)
                    md = dis[edge[i].v], cur[u] = i;
            gap[dis[u] = md + 1]++;
            u = pre[u];
        }
    }
    return ans;
}

void Build(double g) {
    memset(head, -1, sizeof(head)); tot = 0;
    for(int i = 1; i <= n; i++) Add(i, T, g);
    for(int i = 1; i <= m; i++) {
        Add(S, i + n, 1);
        Add(i + n, p[i].first, inf);
        Add(i + n, p[i].second, inf);
    }
}

void DFS(int u) {
    for(int i = head[u]; ~i; i = edge[i].nxt) {
        int v = edge[i].v;
        if(edge[i].cap > 0 && !vis[v]) {
            vis[v] = 1; DFS(v);
            if(1 <= v && v <= n) ans.push_back(v);
        }
    }
}

int main() {
    while(~scanf("%d%d", &n, &m)) {
        for(int i = 1; i <= m; i++) scanf("%d%d", &p[i].first, &p[i].second);
        if(m == 0) { puts("1\n1"); continue; }
        S = 0, T = n + m + 1;
        double l = 0.0, r = m;
        while(r - l >= 1.0 / n / n) { // 不同解之间误差的精度不超过1/(n*n)
            double mid = (l + r) / 2;
            Build(mid);
            double now = 1.0 * m - ISAP(S, T, T + 1); // 转化为最大权闭合图
            if(now < eps) r = mid; // h(g)为单调递减函数,如果h(g)<0,那么g要减小,当h(g)为0得到最优解
            else l = mid;
        }
        Build(l);
        ISAP(S, T, T + 1);
        ans.clear();
        vis[S] = 1;
        memset(vis, 0, sizeof(vis));
        DFS(S);
        sort(ans.begin(), ans.end());
        printf("%d\n", ans.size());
        for(int i = 0; i < ans.size(); i++)
            printf("%d\n", ans[i]);
    }
    return 0;
}

/*
5 6
1 5
5 4
4 2
2 5
1 2
3 1

4 0
---
4
1
2
4
5

1
1
*/
posted @ 2017-10-17 19:59  Shadowdsp  阅读(479)  评论(0编辑  收藏  举报