Loading

POJ 1966:Cable TV Network(最小点割集)***

http://poj.org/problem?id=1966

题意:给出一个由n个点,m条边组成的无向图。求最少去掉多少点才能使得图中存在两点,它们之间不连通。

思路:将点i拆成a和b,连一条a->b的容量为1的边,代表这个点只能走一次,然后如果点i和点j有边相连,那么将bi和aj相连,bj和ai相连,容量为INF,代表这条边可以走INF次。

然后O(n^2)枚举源点和汇点跑最大流,算的最小的最大流就是答案。(这个时候的最大流代表的是S跑到T需要经过多少路径(最小割),如果得到的最大流是INF,那么代表图完全连通,因此还要和n取一个较小值)。

有一个以前模板的点要完善:初始化 index = S;

 

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <queue>
 4 using namespace std;
 5 #define N 210
 6 #define INF 0x3f3f3f3f
 7 struct Edge {
 8     int v, nxt, cap, init;
 9     Edge () {}
10     Edge (int v, int nxt, int cap, int init) : v(v), nxt(nxt), cap(cap), init(init) {}
11 } edge[N*N];
12 int head[N], tot, dis[N], cur[N], pre[N], gap[N], n, m;
13 
14 void Add(int u, int v, int cap) {
15     edge[tot] = Edge(v, head[u], cap, cap); head[u] = tot++;
16     edge[tot] = Edge(u, head[v], 0, 0); head[v] = tot++;
17 }
18 
19 int BFS(int S, int T) {
20     queue<int> que; que.push(T);
21     memset(dis, INF, sizeof(dis));
22     memset(gap, 0, sizeof(gap));
23     gap[0]++; dis[T] = 0;
24     while(!que.empty()) {
25         int u = que.front(); que.pop();
26         for(int i = head[u]; ~i; i = edge[i].nxt) {
27             int v = edge[i].v;
28             if(dis[v] == INF) {
29                 dis[v] = dis[u] + 1;
30                 gap[dis[v]]++;
31                 que.push(v);
32             }
33         }
34     }
35 }
36 
37 int ISAP(int S, int T, int n) {
38     BFS(S, T);
39     memcpy(cur, head, sizeof(cur));
40     int u = pre[S] = S, i, index, flow, ans = 0;
41     while(dis[S] < n) {
42         if(u == T) {
43             flow = INF, index = S; // index = S !!!
44             for(i = S; i != T; i = edge[cur[i]].v)
45                 if(flow > edge[cur[i]].cap) flow = edge[cur[i]].cap, index = i;
46             for(i = S; i != T; i = edge[cur[i]].v)
47                 edge[cur[i]].cap -= flow, edge[cur[i]^1].cap += flow;
48             ans += flow, u = index;
49         }
50         for(i = cur[u]; ~i; i = edge[i].nxt)
51             if(edge[i].cap > 0 && dis[edge[i].v] == dis[u] - 1) break;
52         if(~i) {
53             pre[edge[i].v] = u; cur[u] = i; u = edge[i].v;
54         } else {
55             if(--gap[dis[u]] == 0) break;
56             int md = n;
57             for(i = head[u]; ~i; i = edge[i].nxt)
58                 if(md > dis[edge[i].v] && edge[i].cap > 0) md = dis[edge[i].v], cur[u] = i;
59             gap[dis[u] = md + 1]++;
60             u = pre[u];
61         }
62     }
63     return ans;
64 }
65 
66 int main() {
67     while(~scanf("%d%d", &n, &m)) {
68         memset(head, -1, sizeof(head)); tot = 0;
69         for(int i = 1; i <= n; i++) Add(i, i + n, 1);
70         for(int i = 1; i <= m; i++) {
71             int u, v; scanf(" (%d, %d)", &u, &v);
72             u++, v++;
73             Add(u + n, v, INF); Add(v + n, u, INF);
74         }
75         int ans = INF;
76         for(int i = 1; i < n; i++) {
77             for(int j = i + 1; j <= n; j++) {
78                 for(int k = 0; k < tot; k++) edge[k].cap = edge[k].init;
79                 int now = ISAP(i + n, j, 2 * n);
80                 if(now < ans) ans = now;
81             }
82         }
83         if(ans > n) ans = n;
84         printf("%d\n", ans);
85     }
86     return 0;
87 }

 

posted @ 2017-04-26 17:30  Shadowdsp  阅读(316)  评论(0编辑  收藏  举报