深度学习train模板

import torch from torch import nn, optim from torch.optim.lr_scheduler import CosineAnnealingLR from torchinfo import summary import timm import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader from matplotlib import pyplot as plt import numpy as np from tqdm import tqdm import Ranger def get_dataloader(batch_size): data_transform = { "train": transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]), "val": transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])} train_dataset = torchvision.datasets.CIFAR10('./p10_dataset', train=True, transform=data_transform["train"], download=True) test_dataset = torchvision.datasets.CIFAR10('./p10_dataset', train=False, transform=data_transform["val"], download=True) print('训练数据集长度: {}'.format(len(train_dataset))) print('测试数据集长度: {}'.format(len(test_dataset))) # DataLoader创建数据集 train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) return train_dataloader,test_dataloader def show_pic(dataloader):#展示dataloader里的6张图片 examples = enumerate(dataloader) # 组合成一个索引序列 batch_idx, (example_data, example_targets) = next(examples) classes = ('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') fig = plt.figure() for i in range(6): plt.subplot(2, 3, i + 1) # plt.tight_layout() img = example_data[i] print('pic shape:',img.shape) img = img.swapaxes(0, 1) img = img.swapaxes(1, 2) plt.imshow(img, interpolation='none') plt.title(classes[example_targets[i].item()]) plt.xticks([]) plt.yticks([]) plt.show() def get_net(): #获得预训练模型并冻住前面层的参数 net = timm.create_model('resnet50', pretrained=True, num_classes=10) print(summary(net, input_size=(128, 3, 224, 224))) '''Freeze all layers except the last layer(fc or classifier)''' for param in net.parameters(): param.requires_grad = False # nn.init.xavier_normal_(model.fc.weight) # nn.init.zeros_(model.fc.bias) net.fc.weight.requires_grad = True net.fc.bias.requires_grad = True return net def train(net, loss, train_dataloader, valid_dataloader, device, batch_size, num_epoch, lr, lr_min, optim='sgd', init=True, scheduler_type='Cosine'): def init_xavier(m): #if type(m) == nn.Linear or type(m) == nn.Conv2d: if type(m) == nn.Linear: nn.init.xavier_normal_(m.weight) if init: net.apply(init_xavier) print('training on:', device) net.to(device) if optim == 'sgd': optimizer = torch.optim.SGD((param for param in net.parameters() if param.requires_grad), lr=lr, weight_decay=0) elif optim == 'adam': optimizer = torch.optim.Adam((param for param in net.parameters() if param.requires_grad), lr=lr, weight_decay=0) elif optim == 'adamW': optimizer = torch.optim.AdamW((param for param in net.parameters() if param.requires_grad), lr=lr, weight_decay=0) elif optim == 'ranger': optimizer = Ranger((param for param in net.parameters() if param.requires_grad), lr=lr, weight_decay=0) if scheduler_type == 'Cosine': scheduler = CosineAnnealingLR(optimizer, T_max=num_epoch, eta_min=lr_min) train_losses = [] train_acces = [] eval_acces = [] best_acc = 0.0 for epoch in range(num_epoch): print("——————第 {} 轮训练开始——————".format(epoch + 1)) # 训练开始 net.train() train_acc = 0 for batch in tqdm(train_dataloader, desc='训练'): imgs, targets = batch imgs = imgs.to(device) targets = targets.to(device) output = net(imgs) Loss = loss(output, targets) optimizer.zero_grad() Loss.backward() optimizer.step() _, pred = output.max(1) num_correct = (pred == targets).sum().item() acc = num_correct / (batch_size) train_acc += acc scheduler.step() print("epoch: {}, Loss: {}, Acc: {}".format(epoch, Loss.item(), train_acc / len(train_dataloader))) train_acces.append(train_acc / len(train_dataloader)) train_losses.append(Loss.item()) # 测试步骤开始 net.eval() eval_loss = 0 eval_acc = 0 with torch.no_grad(): for imgs, targets in valid_dataloader: imgs = imgs.to(device) targets = targets.to(device) output = net(imgs) Loss = loss(output, targets) _, pred = output.max(1) num_correct = (pred == targets).sum().item() eval_loss += Loss acc = num_correct / imgs.shape[0] eval_acc += acc eval_losses = eval_loss / (len(valid_dataloader)) eval_acc = eval_acc / (len(valid_dataloader)) if eval_acc > best_acc: best_acc = eval_acc torch.save(net.state_dict(),'best_acc.pth') eval_acces.append(eval_acc) print("整体验证集上的Loss: {}".format(eval_losses)) print("整体验证集上的正确率: {}".format(eval_acc)) return train_losses, train_acces, eval_acces def show_acces(train_losses, train_acces, valid_acces, num_epoch):#对准确率和loss画图显得直观 plt.plot(1 + np.arange(len(train_losses)), train_losses, linewidth=1.5, linestyle='dashed', label='train_losses') plt.plot(1 + np.arange(len(train_acces)), train_acces, linewidth=1.5, linestyle='dashed', label='train_acces') plt.plot(1 + np.arange(len(valid_acces)), valid_acces, linewidth=1.5, linestyle='dashed', label='valid_acces') plt.grid() plt.xlabel('epoch') plt.xticks(range(1, 1 + num_epoch, 1)) plt.legend() plt.show() if __name__ == '__main__': train_dataloader, test_dataloader = get_dataloader(batch_size=64) show_pic(train_dataloader) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = get_net() loss = nn.CrossEntropyLoss() train_losses, train_acces, eval_acces = train(net, loss, train_dataloader, test_dataloader, device, batch_size=64, num_epoch=20, lr=0.1, lr_min=1e-4, optim='sgd', init=False) show_acces(train_losses, train_acces, eval_acces, num_epoch=20)

__EOF__

本文作者fhyu
本文链接https://www.cnblogs.com/fhyu/p/18510799.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   fhyu  阅读(14)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
· SQL Server 2025 AI相关能力初探
点击右上角即可分享
微信分享提示