matlabSVM多分类:fitcecoc函数

1.数据集:采用 matlab2016b 自带数据集:iris鸢尾花、ionosphere电离层数据

2.采用函数 fitcecoc 进行SVM多分类模型训练;【fitcecoc:ecoc:error-correcting output code】

3.采用10折交叉验证对数据集进行划分,将Mdl转化为 CVMdl

4.将误差ossLoss作为模型的评价指标

示例1:鸢尾花数据集iris

function [CVMdl,oosLoss]=SVM3()    %分成三类
load fisheriris
X = meas;        %150*4 :150个样本,4个特征(萼长、萼宽、瓣长、瓣宽);meas=measure(长度)
Y = species;     %三种属性{'setosa','versicolor','virginica'};species(种类)
t = templateSVM('Standardize',1); %创建SVM模板t;
%templateSVM是fitcecoc函数中的SVM模板;
%standardize:数据标准化,可用help查看templateSVM其他参数 %训练该模型 Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',{'setosa','versicolor','virginica'}); %验证该模型 CVMdl = crossval(Mdl); %将模型进行交叉验证,平衡模型欠拟合和过拟合 %显示结果 oosLoss = kfoldLoss(CVMdl) %10折交叉验证得到的泛化误差 oosloss =0.033,效果很好

 结果如下:

>> [CVMdl,oosLoss]=SVM3()
CVMdl =
  classreg.learning.partition.ClassificationPartitionedECOC
    CrossValidatedModel: 'ECOC'
         PredictorNames: {'x1'  'x2'  'x3'  'x4'}
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'

  Properties, Methods

oosLoss =
        0.0333333333333333

 

示例2:电离层数据二分类

% matlab自带电离层
load ionosphere;

%使用默认选项训练ECOC多类模型
model_2 = fitcecoc(X,Y);

%创建一个SVM模板
t_2 = templateSVM('Standardize',1);
%接下来训练ECOC分类器
model_2 = fitcecoc(X,Y,'Learners',t_2);
%使用10倍交叉验证交叉验证Mdl
CVmodel_2 = crossval(model_2);
%估算泛化误差
oosLoss_2 = kfoldLoss(CVmodel_2);

结果:

>> [CVmodel_2,oosLoss_2]=SVM31()

CVmodel_2 = 

  classreg.learning.partition.ClassificationPartitionedECOC
    CrossValidatedModel: 'ECOC'
         PredictorNames: {1x34 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'


  Properties, Methods


oosLoss_2 =

         0.113960113960115

 

参考资料:

1.官方文档:https://www.mathworks.com/help/stats/fitcecoc.html

2.代码参考:fitcecoc的其他数据集尝试: https://blog.csdn.net/kekeicon/article/details/72812097,作者:kekeicon

3.matlab自带数据集一览:https://ww2.mathworks.cn/help/stats/sample-data-sets.html

 

posted @ 2020-05-21 16:33  Feynmania  阅读(9894)  评论(1编辑  收藏  举报