HDU 3811 Permutation 状压dp
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=3811
Permutation
Memory Limit: 32768/32768 K (Java/Others)
输入
The first line contains an integer T indicating the number of test cases.
There are two integers N and M in the first line of each test case. M lines follow, the i-th line contains two integers Ai and Bi.Technical Specification
- 1 <= T <= 50
- 1 <= N <= 17
- 1 <= M <= N*N
- 1 <= Ai, Bi <= N
输出
For each test case, output the case number first. Then output the number of beautiful permutations in a line.
样例输入
3
3 2
1 1
2 1
3 2
1 1
2 2
4 3
1 1
1 2
1 3
样例输出
Case 1: 4
Case 2: 3
Case 3: 18
题意
给你一些条件:(a,b),在a这个位置要放b,求至少满足其中一个条件的1到n的排列有多少种。
题解
首先,从正面很明显可以看出是容斥,考虑条件间的容斥,但是发现条件有17*17个,因此不可行。
然后可以从反面出发,要求至少满足一个就是求所有的-一个都不满足的,所以我们只要求出一个都不满足的就可以了。这个可以用dp做,dp[i][j]表示前i位放的状态为j的情况。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=10000000000000000LL;
const double eps=1e-9;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=17;
LL dp[maxn][1<<maxn];
int n,m;
int mp[maxn][maxn];
int main() {
int tc,kase=0;
scf("%d",&tc);
while(tc--){
scf("%d%d",&n,&m);
clr(mp,0);
rep(i,0,m){
int u,v;
scf("%d%d",&u,&v); u--,v--;
mp[u][v]=true;
}
///初始化
clr(dp,0);
for(int i=0;i<n;i++){
if(mp[0][i]==0){
dp[0][1<<i]=1;
}
}
///递推
for(int i=1;i<n;i++){
for(int j=0;j<(1<<n);j++){
for(int k=0;k<n;k++){
if(!(j&(1<<k))&&!mp[i][k]){
dp[i][j^(1<<k)]+=dp[i-1][j];
}
}
}
}
LL ans=1;
for(int i=2;i<=n;i++) ans*=i;
ans-=dp[n-1][(1<<n)-1];
prf("Case %d: %lld\n",++kase,ans);
}
return 0;
}
//end-----------------------------------------------------------------------