Codeforces Round #341 (Div. 2) E. Wet Shark and Blocks dp+矩阵加速
题目链接:
http://codeforces.com/problemset/problem/621/E
E. Wet Shark and Blocks
memory limit per test256 megabytes
样例输出
3
题意
给你n个数ai(ai>=1&&ai<=9),你每次要在其中选一个数,可以重复选,你现在要取b次,将选出来的数按选择的顺序组成一个b位的整数,现在问要使最后的结果%x==k,总共有多少种选法。
题解
dp[i][j]表示选出来的前i个数拼成的数%x==j的一共有多少种,则容易得到状态转移表达式:dp[i][(k10+j)%10]+=dp[i-1][k]cntv[j](cntv[j]表示n个数中等于j的有多少个)。
b有10^9,明显是需要矩阵加速一下!!!
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=111;
const int mod=1e9+7;
struct Matrix {
LL mat[maxn][maxn];
Matrix() { memset(mat, 0, sizeof(mat)); }
friend Matrix operator *(const Matrix& A, const Matrix& B);
friend Matrix operator +(const Matrix &A,const Matrix &B);
friend Matrix pow(Matrix A, int n);
};
Matrix I;
Matrix operator +(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
ret.mat[i][j] = (A.mat[i][j] + B.mat[i][j])%mod;
}
}
return ret;
}
Matrix operator *(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
for (int k = 0; k < maxn; k++) {
ret.mat[i][j] = (ret.mat[i][j]+A.mat[i][k] * B.mat[k][j]) % mod;
}
}
}
return ret;
}
Matrix pow(Matrix A, int n) {
Matrix ret=I;
while (n) {
if (n & 1) ret = ret*A;
A = A*A;
n /= 2;
}
return ret;
}
int n,m,k,mo;
LL cntv[11];
void solve(){
///状态转移矩阵
Matrix A;
for(int j=0;j<mo;j++){
for(int dig=1;dig<=9;dig++){
int i=(j*10+dig)%mo;
A.mat[i][j]+=cntv[dig];
}
}
///初始向量
Matrix vec;
for(int dig=1;dig<=9;dig++){
vec.mat[dig%mo][0]+=cntv[dig];
}
vec=pow(A,m-1)*vec;
prf("%I64d\n",vec.mat[k][0]);
}
void init(){
///单位矩阵
for(int i=0;i<maxn;i++) I.mat[i][i]=1;
clr(cntv,0);
}
int main() {
init();
scf("%d%d%d%d",&n,&m,&k,&mo);
for(int i=1;i<=n;i++){
int x; scf("%d",&x);
cntv[x]++;
}
solve();
return 0;
}
//end-----------------------------------------------------------------------