BNUOJ 52303 Floyd-Warshall Lca+bfs最短路
题目链接:
https://www.bnuoj.com/v3/problem_show.php?pid=52303
Floyd-Warshall
Memory Limit: 1048576KB
输入
The first line contains 3 integers n, m, q (1 ≤ n ≤ 105
, 0 < m − n < 100, 1 ≤ q ≤ 105
).
The i-th of the following m lines contains 2 integers ai
, bi (1 ≤ ai
, bi ≤ n).
The i-th of the last q lines contains 2 integers ui
, vi (1 ≤ ui
, vi ≤ n).
输出
n lines with integers l1, l2, . . . , ln. li denotes the smallest number of roads travelling from city ui to city
vi
.
样例输入
4 5 3
1 2
1 3
1 4
2 3
3 4
2 2
2 3
2 4
样例输出
0
1
2
题意
给你n个点,m条无相边,q个询问,查询u到v的最短路。
题解
首先n有105,所以n2的bfs暴力每个源点是不可能的。
那么这题有什么特点呢?m-n<100,明显是张稀疏图!
如果题目给的是一颗树,那么我们就可以用logn的算法处理一个询问。(倍增LCA)
因此我们可以考虑把图拆出一颗树(其实是森林),吧所有非树边的点都存起来,对它们跑bfs求到所有其他点的最短路。
对于一个查询,首先我们先用logn求只经过树边的最短路,然后暴力枚举会进过的一个非树边上的顶点x,用d(u,x)+d(x,v)来更新答案。 这样就处理完了。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<sstream>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
//数据需要开大点,否则会出现tle、re的情况。。。
const int maxn=101010;
const int maxm=18;
struct Edge {
int u,v,ne,flag;
Edge(int u,int v,int ne):u(u),v(v),ne(ne) {
flag=0;
}
Edge() {}
} egs[maxn*2];
int head[maxn],tot;
int used[maxn];
void addEdge(int u,int v) {
egs[tot]=Edge(u,v,head[u]);
head[u]=tot++;
}
//dep:深度,fa:父亲,anc:祖先
int dep[maxn],fa[maxn],vis[maxn];
int anc[maxn][maxm];
void dfs(int u,int f,int d) {
vis[u]=1;
dep[u]=d;
fa[u]=f;
anc[u][0]=f;
for(int i=1; i<maxm; i++) {
anc[u][i]=anc[anc[u][i-1]][i-1];
}
for(int p=head[u]; p!=-1; p=egs[p].ne) {
Edge& e=egs[p];
if(e.v==f) continue;
if(!vis[e.v]) {
dfs(e.v,u,d+1);
} else {
used[u]=used[e.v]=1;
}
}
}
//dis:非树边上的点到所有点的距离
int dis[222][maxn];
//ha:存非树边上的点
int ha[222],last;
int myque[maxn],frt,rear;
void bfs(int id) {
int s=ha[id];
frt=0,rear=0;
dis[id][s]=0;
myque[rear++]=s;
clr(vis,0);
vis[s]=1;
while(frt<rear) {
int u=myque[frt++];
for(int p=head[u]; p!=-1; p=egs[p].ne) {
Edge& e=egs[p];
if(vis[e.v]) continue;
vis[e.v]=1;
dis[id][e.v]=dis[id][u]+1;
myque[rear++]=e.v;
}
}
}
int Lca(int u,int v) {
if(dep[u]<dep[v]) swap(u,v);
for(int i=maxm-1; i>=0; i--) {
if(dep[anc[u][i]]>=dep[v]) {
u=anc[u][i];
}
}
if(u==v) return u;
for(int i=maxm-1; i>=0; i--) {
if(anc[u][i]!=anc[v][i]) {
u=anc[u][i];
v=anc[v][i];
}
}
return anc[u][0];
}
int n,m,q;
int main() {
scf("%d%d%d",&n,&m,&q);
clr(used,0);
clr(head,-1);
tot=0;
//建图
for(int i=0; i<m; i++) {
int u,v;
scf("%d%d",&u,&v);
if(u==v) continue;
addEdge(u,v);
addEdge(v,u);
}
//处理出树边、非树边
clr(vis,0);
clr(anc,0);
for(int i=1; i<=n; i++) {
if(!vis[i]) {
dfs(i,0,1);
}
}
//把非树边上的点存起来
last=0;
for(int i=1; i<=n; i++) if(used[i]) {
ha[last++]=i;
}
//跑非树边上的点到所有点的距离
clr(dis,0x3f);
rep(i,0,last) bfs(i);
while(q--) {
int u,v;
scf("%d%d",&u,&v);
int lca=Lca(u,v);
LL res=dep[u]+dep[v]-2*dep[lca];
rep(i,0,last) {
LL tmp=(LL)dis[i][u]+dis[i][v];
res=min(res,tmp);
}
prf("%lld\n",res);
}
return 0;
}
//end-----------------------------------------------------------------------