CSU 1808: 地铁 最短路

题目链接:

http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1808

1808: 地铁

Time Limit: 5 Sec
Memory Limit: 128 MB
#### 问题描述 > Bobo 居住在大城市 ICPCCamp。 > > ICPCCamp 有 n 个地铁站,用 1,2,…,n 编号。 m 段双向的地铁线路连接 n 个地铁站,其中第 i 段地铁属于 ci 号线,位于站 ai,bi 之间,往返均需要花费 ti 分钟(即从 ai 到 bi 需要 ti 分钟,从 bi 到 ai 也需要 ti 分钟)。 > 众所周知,换乘线路很麻烦。如果乘坐第 i 段地铁来到地铁站 s,又乘坐第 j 段地铁离开地铁站 s,那么需要额外花费 |ci-cj | 分钟。注意,换乘只能在地铁站内进行。 > Bobo 想知道从地铁站 1 到地铁站 n 所需要花费的最小时间。 #### 输入 > 输入包含不超过 20 组数据。 > 每组数据的第一行包含两个整数 n,m (2≤n≤105,1≤m≤105). > 接下来 m 行的第 i 行包含四个整数 ai,bi,ci,ti (1≤ai,bi,ci≤n,1≤ti≤109). > 保证存在从地铁站 1 到 n 的地铁线路(不一定直达)。 #### 输出 > 对于每组数据,输出一个整数表示要求的值。 #### 样例 > **sample input** > 3 3 > 1 2 1 1 > 2 3 2 1 > 1 3 1 1 > 3 3 > 1 2 1 1 > 2 3 2 1 > 1 3 1 10 > 3 2 > 1 2 1 1 > 2 3 1 1 > > **sample output** > 1 > 3 > 2

题解

一个地铁站有多少条线路,就把它拆成多少个点,然后对地铁线路编号相邻的两个点建边,权值为编号差值的绝对值,(由于权值的计算方式比较特殊,我们没有必要连成完全图,只需要连一条链就可以了。)图建完后跑最短路径。

代码

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf

typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;

const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);

//start----------------------------------------------------------------------

const int maxn=4e5+10;

int n,m,tot;

struct Node{
    int id,u,v,w;
}nds[maxn];

struct Edge{
    int u,v,w;
    Edge(int u,int v,int w):u(u),v(v),w(w){}
};

struct HeapNode{
    LL d; int u;
    HeapNode(LL d,int u):d(d),u(u){}
    bool operator < (const HeapNode& rhs) const {
        return d>rhs.d;
    }
};

struct Dijkstra{
    int n,m;
    vector<Edge> egs;
    vector<int> G[maxn];
    bool done[maxn];
    LL d[maxn];

    void init(int n){
        this->n=n;
        rep(i,0,n) G[i].clear();
        egs.clear();
    }

    void addEdge(int u,int v,int d){
        egs.pb(Edge(u,v,d));
        m=egs.sz();
        G[u].pb(m-1);
    }

    void dijkstra(VI &lis){
        priority_queue<HeapNode> Q;
        rep(i,0,n)  d[i]=INFL;
        rep(i,0,lis.sz()){
            int v=lis[i];
            d[v]=0;
            Q.push(HeapNode(0,v));
        }
        clr(done,0);
        while(!Q.empty()){
            HeapNode x=Q.top(); Q.pop();
            int u=x.u;
            if(done[u]) continue;
            done[u]=true;
            rep(i,0,G[u].sz()){
                Edge& e=egs[G[u][i]];
                if(d[e.v]>d[u]+e.w){
                    d[e.v]=d[u]+e.w;
                    Q.push(HeapNode(d[e.v],e.v));
                }
            }
        }
    }

}dij;

map<pair<int,int>,int> mp;

VI G[maxn];

void init(){
    mp.clear();
    rep(i,0,n+10) G[i].clear();
    tot=0;
}

int main() {
    while(scf("%d%d",&n,&m)==2){
        init();
        rep(i,0,m){
            scf("%d%d%d%d",&nds[i].u,&nds[i].v,&nds[i].id,&nds[i].w);
            G[nds[i].u].pb(nds[i].id);
            G[nds[i].v].pb(nds[i].id);
        }
        for(int i=1;i<=n;i++){
            sort(all(G[i]));
            G[i].erase(unique(all(G[i])),G[i].end());
            rep(j,0,G[i].sz()){
                int v=G[i][j];
                mp[mkp(i,v)]=tot++;
            }
        }
        dij.init(tot);

        rep(i,0,m){
            int u=mp[mkp(nds[i].u,nds[i].id)];
            int v=mp[mkp(nds[i].v,nds[i].id)];
            dij.addEdge(u,v,nds[i].w);
            dij.addEdge(v,u,nds[i].w);
        }

        for(int i=1;i<=n;i++){
            rep(j,0,G[i].sz()-1){
                int u=mp[mkp(i,G[i][j])];
                int v=mp[mkp(i,G[i][j+1])];
                int w=G[i][j+1]-G[i][j];
                dij.addEdge(u,v,w);
                dij.addEdge(v,u,w);
            }
        }

        VI lis;
        rep(i,0,G[1].sz()){
            int v=mp[mkp(1,G[1][i])];
            lis.pb(v);
        }

        dij.dijkstra(lis);

        LL ans=INFL;
        rep(i,0,G[n].sz()){
            int v=mp[mkp(n,G[n][i])];
            ans=min(ans,dij.d[v]);
        }

        prf("%lld\n",ans);
    }
    return 0;
}

//end-----------------------------------------------------------------------

1808: 地铁

posted @ 2016-09-05 15:56  fenicnn  阅读(258)  评论(0编辑  收藏  举报