HDU 5862 Counting Intersections 扫描线+树状数组
题目链接:
http://acm.split.hdu.edu.cn/showproblem.php?pid=5862
Counting Intersections
Memory Limit: 65536/65536 K (Java/Others)
样例
sample input
2
4
1 0 1 3
2 0 2 3
0 1 3 1
0 2 3 2
4
0 0 2 0
3 0 3 2
3 3 1 3
0 3 0 2sample output
4
0
题意
给你若干个平行于坐标轴的,长度大于0的线段,且任意两个线段没有公共点,不会重合覆盖。问有多少个交点。
题解
扫描线+树状数组
首先把平行于x轴的线段和平行于y轴的线段分开存。对于平行于y轴的线段,我们按它的上端点排降序,对于平行于x轴的线段,我们按照它们的高度排降序。然后我们遍历一遍平行于x轴的线段,考虑有多少条线段与当前遍历的平行于x轴的线段所在的直线相交的线段,并且更新到树状数组中,那么与当前平行于x轴的线段相交的垂直线段为sum(r)-sum(l-1),l、r分别为当前线段的左右端点。
那么,如何维护与某条直线相交的垂直线段呢?
由于我们遍历平行于x轴的直线是按高度从高到低的,对于上端点高于当前遍历高度的所有垂直线段都压到树状数组中,并且把它们的下端点(大的优先)压到优先队列中,然后再从优先队列中踢掉下端点大于当前遍历高度的,同时更新树状数组(删除操作)。
由于数据范围比较大,横坐标需要离散化。
代码
#include<map>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) ;//cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define reu(i,a,b) for(int i=a;i<=(b);i++)
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
//start----------------------------------------------------------------------
const int maxn=4e5+10;
LL sumv[maxn];
struct Node{
int val,u,v;
Node(int val,int u,int v):val(val),u(u),v(v){}
bool operator < (const Node& tmp) const {
return val>tmp.val;
}
};
bool cmp(const Node& n1,const Node& n2){
return n1.v>n2.v;
}
LL sum(int x){
LL ret=0;
while(x>0){
ret+=sumv[x];
x-=(x&-x);
}
return ret;
}
void add(int x,int v){
while(x<maxn){
sumv[x]+=v;
x+=(x&-x);
}
}
VI ha;
vector<Node> col,row;
int n;
void init(){
ha.clear();
col.clear();
row.clear();
clr(sumv,0);
}
int main() {
int tc;
scanf("%d",&tc);
while(tc--){
scanf("%d",&n);
init();
rep(i,0,n){
int u1,v1,u2,v2;
scanf("%d%d%d%d",&u1,&v1,&u2,&v2);
if(u1==u2){
if(v1>v2) swap(v1,v2);
col.push_back(Node(u1,v1,v2));
}else{
if(u1>u2) swap(u1,u2);
row.push_back(Node(v1,u1,u2));
}
ha.push_back(u1);
ha.push_back(u2);
}
sort(all(ha));
ha.erase(unique(all(ha)),ha.end());
sort(all(col),cmp);
sort(all(row));
priority_queue<pair<int,int> > pq;
int p=0;
LL ans=0;
rep(i,0,row.sz()){
int hi=row[i].val;
bug(hi);
while(p<col.sz()&&col[p].v>=hi){
int id=lower_bound(all(ha),col[p].val)-ha.begin()+1;
pq.push(mkp(col[p].u,id));
add(id,1);
p++;
}
while(!pq.empty()&&pq.top().X>hi){
add(pq.top().Y,-1);
pq.pop();
}
int l=lower_bound(all(ha),row[i].u)-ha.begin()+1;
int r=lower_bound(all(ha),row[i].v)-ha.begin()+1;
ans+=sum(r)-sum(l-1);
}
printf("%lld\n",ans);
}
return 0;
}
//end-----------------------------------------------------------------------
/*
4
1 0 1 1
0 1 2 1
3 1 3 2
1 2 1 3
*/