Codeforces Round #249 (Div. 2) D. Special Grid 枚举
题目链接:
http://codeforces.com/contest/435/problem/D
D. Special Grid
memory limit per test:256 megabytes
输出
Print a single integer — the number of required triangles.
样例
sample input
3 5
10000
10010
00001sample output
20
题意
给你一个网格(网格有对角线),问由网格的边和对角线构成的三角形(三条边上都不能有任何黑点)个数。
题解
其实满足要求的三角形只有等腰直角三角形
对每个点,我们先预处理出八个方向能延伸出去的最大长度。(预处理出来这些,我们就可以判断一个直角三角形的三条边上是否有黑点了。比如对于三角形0 + 3 的斜边,你只要考虑0的左上角能延伸的最大长度或者3的右下角能延伸的最大长度就可以了)
然后枚举每个点,统计以这个点为直角的所有三角形的个数
对8个方向做一个说明:
7 3 4
\ | /
\ | /
\|/
2---+---0
/|\
/ | \
/ | \
6 1 5
八个方向组成的以'+'为原点,长度为1的直角:
0 -> + -> 1
+-
|
1 -> + -> 2
-+
|
2 -> + -> 3
|
-+
3 -> + -> 0
|
+-
4 -> + -> 5
/
+
\
5 -> + -> 6
+
/ \
6 -> + -> 7
\
+
/
7 -> + -> 4
\ /
+
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 444;
char str[maxn][maxn];
//dp[i][j][d]记录(i,j)顶点从八个方向扩散出去的长度(这里的长度是按顶点数来度量的)。
int dp[maxn][maxn][8];
typedef __int64 LL;
int n, m;
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%s", str[i] + 1);
for (int i = 0; i < maxn; i++) str[i][0] = str[0][i] = str[n + 1][i] = str[i][m + 1] = '1';
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
//预处理出每个顶点八个方向能延伸出去的最大长度
for (int k = 0;; k++) if (str[i][j + k] == '1') {
dp[i][j][0] = k - 1; break;
}
for (int k = 0;; k++) if (str[i + k][j] == '1') {
dp[i][j][1] = k - 1; break;
}
for (int k = 0;; k++) if (str[i][j - k] == '1') {
dp[i][j][2] = k - 1; break;
}
for (int k = 0;; k++) if (str[i - k][j] == '1') {
dp[i][j][3] = k - 1; break;
}
for (int k = 0;; k++) if (str[i - k][j + k] == '1') {
dp[i][j][4] = k - 1; break;
}
for (int k = 0;; k++) if (str[i + k][j + k] == '1') {
dp[i][j][5] = k - 1; break;
}
for (int k = 0;; k++) if (str[i + k][j - k] == '1') {
dp[i][j][6] = k - 1; break;
}
for (int k = 0;; k++) if (str[i - k][j - k] == '1') {
dp[i][j][7] = k - 1; break;
}
}
}
int ma = max(n, m);
LL ans = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int cnt = ans;
//这里的k可以理解为两直角边的长度。
for (int k = 1; k <= ma; k++) {
//计算以(i,j)这个顶点为直角的等腰直角三角形(总共有八个,看几个是合法的)
//这四种情况中直角由网格的两条邻边构成
//这四种情况等腰直角三角形三边跨越的顶点数刚好都是相等的
if (k <= dp[i][j][0] && k <= dp[i][j][1] && k <= dp[i][j + k][6]) {
ans++;
}
if (k <= dp[i][j][1] && k <= dp[i][j][2] && k <= dp[i + k][j][7]) {
ans++;
}
if (k <= dp[i][j][2] && k <= dp[i][j][3] && k <= dp[i][j - k][4]) {
ans++;
}
if (k <= dp[i][j][3] && k <= dp[i][j][0] && k <= dp[i - k][j][5]) {
ans++;
}
//这四种情况中直角由网格的两条相邻对角线构成
//这里开始斜边跨越的节点数刚好是直角边的两倍,所以斜边是2*k。
if (k <= dp[i][j][4] && k <= dp[i][j][5] && 2*k <= dp[i - k][j + k][1]) {
ans++;
}
if (k <= dp[i][j][5] && k <= dp[i][j][6] && 2*k <= dp[i + k][j + k][2]) {
ans++;
}
if (k <= dp[i][j][6] && k <= dp[i][j][7] && 2*k <= dp[i + k][j - k][3]) {
ans++;
}
if (k <= dp[i][j][7] && k <= dp[i][j][4] && 2*k <= dp[i - k][j - k][0]) {
ans++;
}
}
}
}
printf("%I64d\n", ans);
return 0;
}
/*
3 3
001
010
000
3 4
0010
0100
0010
5 5
00000
01010
00000
01010
00000
4 4
0000
0111
0011
0111
*/