Codeforces Round #131 (Div. 1) B. Numbers dp
题目链接:
http://codeforces.com/problemset/problem/213/B
B. Numbers
memory limit per test 256 megabytes
note
numbers 10, 110, 210, 120, 103 meet the requirements. There are other suitable numbers, 36 in total.
题意
给你0到9这十个数字,第i个数至少要用a[i]次,问能拼成的长度小于等于n的正整数(不能有前导零)
题解
dp[i][len]表示利用i到9的数字能拼成的长度为len的所有可能数。
状态转移方程:dp[i][len]=sigma(dp[i+1][len-k]*C[len][k])。
相当于是在用i+1到9凑成的长度为len-k的数字串里面塞进去k个i的所有可能数。用乘法原理可知去掉已经统计出来的len-k,我们要处理的就是从len里面选k个位置来放i。
注意:由于前导零不用考虑,而且只要统计正整数,所以我们在放0的时候,是不能让零放在第一位的,对于0我们可以特殊处理一下。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef __int64 LL;
const int maxn = 111;
const int mod = 1e9 + 7;
int dig[22],n;
LL dp[22][maxn];
LL C[maxn][maxn];
void pre() {
memset(C, 0, sizeof(C));
C[0][0] = 1;
for (int i = 1; i < maxn; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++) {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
C[i][j] %= mod;
}
}
}
int main() {
pre();
scanf("%d", &n);
for (int i = 0; i < 10; i++) {
scanf("%d", &dig[i]);
}
memset(dp, 0, sizeof(dp));
dp[10][0] = 1;
for (int i = 9; i > 0; i--) {
for (int j = 0; j < maxn; j++) {
for (int k = dig[i]; k <=j; k++) {
dp[i][j] += dp[i + 1][j - k] * C[j][k];
dp[i][j] %= mod;
}
}
}
for (int j = 0; j < maxn; j++) {
for (int k = dig[0]; k < j; k++) {
dp[0][j] += dp[1][j - k] * C[j - 1][k];
dp[0][j] %= mod;
}
}
LL ans = 0;
for (int j = 1; j <= n; j++) {
ans += dp[0][j];
ans %= mod;
}
printf("%I64d\n", ans);
return 0;
}