HDU 5294 Tricks Device 最短路+最大流

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5294

题意:

给你个无向图:

1、求最少删除几条边就能破坏节点1到节点n的最短路径,

2、最多能删除多少条边同时保证1到n的最短距离不变。

题解:

首先用spfa或dijcstra跑出所有最短路组成的DAG图。

用这个图跑最大流节能解决第一个问题,用这个图跑一遍bfs最短路就能解决第二个问题。

然而我在跑最大流的时候竟然把DAG图建成双向的了orz。。

代码:

#include<iostream>
#include<cstdio>
#include<vector>
#include<utility>
#include<queue>
#include<cstring>
using namespace std;

const int maxn = 2222;
const int INF = 0x3f3f3f3f;

struct Edge {
    int u, v, c, f;
    Edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
    Edge() {}
};

struct Dinic {
    int n, m, s, t;
    vector<Edge> egs;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];

    void init(int n) {
        this->n = n;
        for (int i = 0; i < n; i++) G[i].clear();
        egs.clear();
    }

    void addEdge(int u, int v, int c) {
        egs.push_back(Edge(u, v, c, 0));
        egs.push_back(Edge(v, u, 0, 0));
        m = egs.size();
        G[u].push_back(m - 2);
        G[v].push_back(m - 1);
    }
    bool bfs() {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!Q.empty()) {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++) {
                Edge& e = egs[G[x][i]];
                if (!vis[e.v] && e.c>e.f) {
                    vis[e.v] = 1;
                    d[e.v] = d[x] + 1;
                    Q.push(e.v);
                }
            }
        }
        return vis[t];
    }
    int dfs(int x, int a) {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++) {
            Edge& e = egs[G[x][i]];
            if (d[x] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.c - e.f)))>0) {
                e.f += f;
                egs[G[x][i] ^ 1].f -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int Maxflow(int s, int t) {
        this->s = s; this->t = t;
        int flow = 0;
        while (bfs()) {
            memset(cur, 0, sizeof(cur));
            flow += dfs(s, INF);
        }
        return flow;
    }
}dinic;

int n, m;

vector<pair<int, int> > G[maxn];
vector<pair<int,int> > pre[maxn];

int inq[maxn], d[maxn];
void spfa() {
    queue<int> Q;
    memset(inq, 0, sizeof(inq));
    memset(d, 0x3f, sizeof(d));
    d[0] = 0; inq[0] = 1; Q.push(0);
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        inq[u] = 0;
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i].first, w = G[u][i].second;
            if (d[v] > d[u] + w) {
                d[v] = d[u] + w;
                pre[v].clear(); pre[v].push_back(make_pair(u,w));
                if (!inq[v]) {
                    Q.push(v); inq[v] = 1;
                }
            }
            else if (d[v] == d[u] + w) {
                pre[v].push_back(make_pair(u,w));
            }
        }
    }
}

int dp[maxn];
int bfs() {
    memset(dp, -1, sizeof(dp));
    queue<int> Q;
    Q.push(n - 1); dp[n - 1] = 0;
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        for (int i = 0; i < pre[u].size(); i++) {
            int v = pre[u][i].first;
            if (dp[v] == -1) {
                dp[v] = dp[u] + 1;
                Q.push(v);
            }
        }
    }
    return dp[0];
}

void init() {
    dinic.init(n);
    for (int i = 0; i < n; i++) G[i].clear(),pre[i].clear();
}

int main() {
    while (scanf("%d%d", &n, &m) == 2 && n) {
        init();
        for (int i = 0; i < m; i++) {
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w); u--, v--;
            G[u].push_back(make_pair(v, w));
            G[v].push_back(make_pair(u, w));
        }
        spfa();
        for (int i = n - 1; i > 0; i--) {
            for (int j = 0; j < pre[i].size(); j++) {
                int v = pre[i][j].first;
                //最后建出来的图应该是DAG图!
                //dinic.addEdge(i, v, 1);
                dinic.addEdge(v, i, 1);
            }
        }
        int ans1 = dinic.Maxflow(0,n-1);
        int ans2 = m-bfs();
        printf("%d %d\n", ans1,ans2);
    }
    return 0;
}

/*
8 9
1 2 2
2 3 2
2 4 1
3 5 3
4 5 4
5 8 1
1 6 2
6 7 5
7 8 2

3 3
1 2 1
1 3 1
2 3 1

3 4
1 2 1
2 3 0
1 3 2
1 3 3

*/

 

posted @ 2016-05-29 18:59  fenicnn  阅读(157)  评论(0编辑  收藏  举报