kafka监控指标项

监控配置

​ kafka基本分为broker、producer、consumer三个子项,每一项的启动都需要用到 $KAFKA_HOME/bin/kafka-run-class.sh 脚本,在该脚本中,存在以下语句:

if ...
  KAFKA_JMX_OPTS="-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.authenticate=false  -Dcom.sun.management.jmxremote.ssl=false"
fi
if ...
  KAFKA_JMX_OPTS="$KAFKA_JMX_OPTS -Dcom.sun.management.jmxremote.port=$JMX_PORT "
fi

​ 在启动kafka的过程中,只要指定 JMX_PORT 的值,即可对broker、producer、consumer进行监控。目前有两种方法,

  • $KAFKA_HOME/bin/kafka-server-start.sh$KAFKA_HOME/bin/kafka-console-consumer.sh$KAFKA_HOME/bin/kafka-console-producer.sh 三个脚本中分别添加 $JMX_PORT=XXXX 语句,但是只适用于使用console方式对topic进行使用的情况。
  • 修改$KAFKA_HOME/bin/kafka-run-class.sh 脚本中的上述语句,使其端口随机变化,可以通过 ps -ef |grep kafka 命令来获取随机的端口号,来进行监控

指标项来源

以下端口均随机获得。

主机名 类别 端口号
192.168.20.10 broker 9183
192.168.20.10 producer 9108
192.168.20.10 consumer 9173

kafka监控项

OS监控项

objectName 指标项 说明
java.lang:type=OperatingSystem FreePhysicalMemorySize 空闲物理内存
java.lang:type=OperatingSystem SystemCpuLoad 系统CPU利用率
java.lang:type=OperatingSystem ProcessCpuLoad 进程CPU利用率
java.lang:type=GarbageCollector,
name=G1 Young Generation
CollectionCount GC次数

broker指标

objectName 指标项 说明
kafka.server:type=BrokerTopicMetrics,
name=BytesInPerSec
Count 每秒输入的流量
kafka.server:type=BrokerTopicMetrics,
name=BytesOutPerSec
Count 每秒输出的流量
kafka.server:type=BrokerTopicMetrics,
name=BytesRejectedPerSec
Count 每秒扔掉的流量
kafka.server:type=BrokerTopicMetrics,
name=MessagesInPerSec
Count 每秒的消息写入总量
kafka.server:type=BrokerTopicMetrics,
name=FailedFetchRequestsPerSec
Count 当前机器每秒fetch请求失败的数量
kafka.server:type=BrokerTopicMetrics,
name=FailedProduceRequestsPerSec
Count 当前机器每秒produce请求失败的数量
kafka.server:type=ReplicaManager,
name=PartitionCount
Value 该broker上的partition的数量
kafka.server:type=ReplicaManager,
name=LeaderCount
Value Leader的replica的数量
kafka.network:type=RequestMetrics,
name=TotalTimeMs,request=FetchConsumer
Count 一个请求FetchConsumer耗费的所有时间
kafka.network:type=RequestMetrics,
name=TotalTimeMs,request=FetchFollower
Count 一个请求FetchFollower耗费的所有时间
kafka.network:type=RequestMetrics,
name=TotalTimeMs,request=Produce
Count 一个请求Produce耗费的所有时间

producer以及topic指标

objectName 指标项 官网说明 译文说明
kafka.producer:type=producer-metrics,client-id=console-producer(client-id会变化) incoming-byte-rate The average number of incoming bytes received per second from all servers. producer每秒的平均写入流量
kafka.producer:type=producer-metrics,client-id=console-producer(client-id会变化) outgoing-byte-rate The average number of outgoing bytes sent per second to all servers. producer每秒的输出流量
kafka.producer:type=producer-metrics,client-id=console-producer(client-id会变化) request-rate The average number of requests sent per second to the broker. producer每秒发给broker的平均request次数
kafka.producer:type=producer-metrics,client-id=console-producer(client-id会变化) response-rate The average number of responses received per second from the broker. producer每秒发给broker的平均response次数
kafka.producer:type=producer-metrics,client-id=console-producer(client-id会变化) request-latency-avg The average time taken for a fetch request. 一个fetch请求的平均时间
kafka.producer:type=producer-topic-metrics,client-id=console-producer,topic=testjmx(client-id和topic名称会变化) record-send-rate The average number of records sent per second for a topic. 每秒从topic发送的平均记录数
kafka.producer:type=producer-topic-metrics,client-id=console-producer,topic=testjmx(client-id和topic名称会变化) record-retry-total The total number of retried record sends 重试发送的消息总数量
kafka.producer:type=producer-topic-metrics,client-id=console-producer,topic=testjmx(client-id和topic名称会变化) record-error-total The total number of record sends that resulted in errors 发送错误的消息总数量

consumer指标

objectName 指标项 官网说明 说明
kafka.consumer:type=consumer-fetch-manager-metrics,client-id=consumer-1(client-id会变化) records-lag-max Number of messages the consumer lags behind the producer by. Published by the consumer, not broker. 由consumer提交的消息消费lag
kafka.consumer:type=consumer-fetch-manager-metrics,client-id=consumer-1(client-id会变化) records-consumed-rate The average number of records consumed per second 每秒平均消费的消息数量
posted @   枫子_dan  阅读(11044)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示