unsigned long long类型与long long类型

最近做题的时候,经常遇到范围是2^63,取模2^64的这种题目。遇到这种限制条件时就要想到用unsigned long long类型。

可以简洁地声明为typedef unsigned long long ull。这样,如果ull类型的整数溢出了,就相当于取模2^64了。因为ull的范围是[0,2^64-1]。

而ll的范围是[-2^63,2^63-1],因为有符号的第63位表示“正负”而不表示数值

HDU6492 分宿舍

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=6492

 1 #include<iostream>
 2 #include<cmath>
 3 #include<algorithm>
 4 using namespace std;
 5 typedef unsigned long long ll;//重点了解 
 6 int main()
 7 {
 8     int t;
 9     cin >> t;
10     int n, m, k, a, b, c;
11     while (t--)
12     {
13         cin >> n >> m >> k >> a >> b >> c;
14         ll ans = 100000000000000000;
15         for (int i = 0; i <= k; i++)
16         {
17             ll l = n + k - i;
18             ll r = m + k - i;
19             ll ans1 = i * c;
20             ll ans2 = 100000000000000000;
21             ll ans3 = 100000000000000000;
22             for (int j = 0; j <= l; j++)
23             {
24                 //ll ans2 = 1e9 + 10;
25                 ll aa = l - j;
26                 ll q1 = ceil(j*1.0 / 2)*a;
27                 ll q2 = ceil(aa*1.0 / 3)*b;
28                 ans2 = min(ans2, q1 + q2);
29             }
30             for (int j = 0; j <= r; j++)
31             {
32                 //ll ans3 = 1e9 + 10;
33                 ll aa = r - j;
34                 ll q1 = ceil(j*1.0 / 2)*a;
35                 ll q2 = ceil(aa*1.0 / 3)*b;
36                 ans3 = min(ans3, q1 + q2);
37             }
38             ans = min(ans, ans1 + ans2 + ans3);
39         }
40         cout << ans << endl;
41     }
42     return 0;
43 }

 

posted @ 2019-04-29 19:46  Fzzf1  阅读(41651)  评论(0编辑  收藏  举报