cifar10数据集训练
下载数据集
Cifar10数据集总共有6万张32*32像素点的彩色图片和标签,涵盖十个分类:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车。
其中5万张用于训练,1万张用于测试。
import tensorflow as tf from tensorflow import keras from matplotlib import pyplot as plt import numpy as np from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense,Dropout cifar10 = keras.datasets.cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0
搭建网络结构
model = keras.models.Sequential([ Conv2D(128, (3, 3), activation='relu',padding='same'), keras.layers.BatchNormalization(), MaxPool2D((2, 2)), Dropout(0.3), Conv2D(256, (3, 3), activation='relu',padding='same'), keras.layers.BatchNormalization(), MaxPool2D((2, 2)), Dropout(0.3), Conv2D(512, (3, 3), activation='relu',padding='same'), keras.layers.BatchNormalization(), MaxPool2D((2, 2)), Flatten(), Dropout(0.5), Dense(512, activation='relu', kernel_regularizer=keras.regularizers.l2(0.1)), Dropout(0.5), Dense(10, activation='softmax') ])
编译模型
model.compile(optimizer=keras.optimizers.Adam(lr=0.0001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['accuracy'])
训练模型
history = model.fit(x_train, y_train, epochs=100, batch_size=16,verbose=1,validation_data=(x_test, y_test),validation_freq=1)
可视化acc/loss曲线
#显示训练集和测试集的acc和loss曲线 plt.rcParams['font.sans-serif']=['SimHei'] acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.subplot(1, 2, 1) plt.plot(acc, label='训练Acc') plt.plot(val_acc, label='测试Acc') plt.title('Acc曲线') plt.legend() plt.subplot(1, 2, 2) plt.plot(loss, label='训练Loss') plt.plot(val_loss, label='测试Loss') plt.title('Loss曲线') plt.legend() plt.show()