Deep Learning Terminologies
Deep Learning Terminologies
batch
full batch
已知在梯度下降中,需要对所有样本进行处理过后然后走一步(梯度更新),那么如果我们的样本规模的特别大的话效率就会比较低。假如有 5000 万个样本的话,走一轮迭代就会非常的耗时。这个时候的梯度下降叫做 full batch。
mini-batch
所以为了提高效率,我们可以把样本分成等量的子集。 例如我们把 100 万样本分成 1000 份, 每份 1000 个样本, 这些子集就称为 mini batch。然后我们分别用一个 for 循环遍历这 1000 个子集。 针对每一个子集做一次梯度下降。 然后更新参数的值。接着到下一个子集中继续进行梯度下降。
这样在遍历完所有的 mini batch 之后我们相当于在梯度下降中做了 1000 次迭代。 我们将遍历一次所有样本的行为叫做一个 epoch。在 mini-batch 下的梯度下降中做的事情其实跟 full batch 一样,只不过我们训练的数据不再是所有的样本,而是一个个的子集。 这样在 mini-batch 我们在一个 epoch 中就能进行 1000 次的梯度下降,而在 full batch 中只有一次。 这样就大大的提高了我们算法的运行速度。
智慧在街市上呼喊,在宽阔处发声。
分类:
Machine Learning
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)