各种 机器学习方法 / 学习范式 汇总

各种机器学习方法(学习范式)汇总

强化学习

入门资料

《深入浅出强化学习原理入门》. 郭宪等编著. 电子工业出版社

An Introduction to Reinforcement Learning, Sutton and Barto, 1998

Algorithms for Reinforcement Learning, Szepesvari, 2009

特点

  1. 没有监督数据、只有奖励信号
  2. 奖励信号不一定是实时的,而很可能是延后的,有时甚至延后很多
  3. 时间(序列)是一个重要因素
  4. 当前的行为影响后续接收到的数据

对偶学习

微软亚洲研究院秦涛博士等人在向 NIPS 2016 提交的论文中提出了一种全新的机器学习范式——对偶学习。

入门资料

微软亚洲研究院秦涛:对偶学习的对称之美 | 硬创公开课总结. https://zhuanlan.zhihu.com/p/27513847

对偶学习:一种新的机器学习范式,数据标注成本从2000万美元降到200万. 新智源. http://www.sohu.com/a/121198568_473283

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma, Dual Learning for Machine Translation, NIPS 2016. (https://papers.nips.cc/paper/6469-dual-learning-for-machine-translation

夏应策.对偶学习的理论和实验研究[D].中国科学技术大学,2018

解决的问题

降低对大规模标注数据的依赖性

深度学习的巨大成功得益于大规模的带标签的数据。但是存在两个局限性:1,人工标注获取标签的代价很高;2,在很多任务中没办法收集到大规模的标注数据,例如在医疗或小语种间的相互翻译。

核心思路

对偶学习解决的是实际应用中训练数据不足的问题。

很多人工智能的应用涉及两个互为对偶的任务,例如机器翻译中从中文到英文翻译和从英文到中文的翻译互为对偶、语音处理中语音识别和语音合成互为对偶、图像理解中基于图像生成文本和基于文本生成图像互为对偶、问答系统中回答问题和生成问题互为对偶,以及在搜索引擎中给检索词查找相关的网页和给网页生成关键词互为对偶。这些互为对偶的人工智能任务可以形成一个闭环,使从没有标注的数据中进行学习成为可能。

对偶学习之所以有效,是因为两个对偶任务背后有着非常强的概率联系。

对机器学习领域产生的影响

第一, 很多深度学习的研究人员认为人工智能和深度学习的下一个突破是从未标注的数据进行学习。

第二, 强化学习在复杂的实际应用中的成功还是比较有限。而对偶学习提供了一种为强化学习获取奖励信息的方式,并证实了强化学习在复杂应用(如翻译)中成功的可能。

博弈学习 Game-Theoretic Learning

https://www.zhihu.com/question/300967426/answer/638195353

《刘铁岩:博弈机器学习是什么?》. 微软研究院AI头条. 微信公众平台

迁移学习

入门资料

王晋东. 《迁移学习简明手册》. 2018

Pan S J , Yang Q . A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10):1345-1359.

权威学者

香港科技大学 杨强教授

解决的问题

  1. 有标注的数据不足
  2. 计算能力不足
  3. 个性化需求:进一步提高模型的泛化能力
  4. 特定应用的需求,比如,推荐系统的冷启动问题

联合学习

入门资料

《Google研究 | 联合学习:无需集中存储训练数据的协同机器学习》. 微信公众号:谷歌开发者

解决的问题

标准的机器学习方法需要将训练数据集中到一台机器上或一个数据中心内。为了处理此数据,改善服务,需要构建一套安全、强大的云基础架构。

通过联合学习,移动电话可以协同学习共享的预测模型,同时将所有训练数据保留在设备上,从而无需将数据存储在云中,即可进行机器学习。同时,通过将模型训练引入到设备上,超越了以往使用本地模型预测移动设备的模式。

工作原理

您的设备下载当前模型,通过学习手机中的数据改进模型,然后以小幅更新的形式汇总所做的变更。通过加密通信仅将此模型的更新发送至云,在云中,立即与其他用户更新进行平均,以改进共享模型。所有训练数据仍保留在您的设备上,云中未存储任何个别用户的更新。

优势

建立更智能的模型,缩短延迟时间,减小功耗,同时确保隐私性。除了为共享模型提供更新之外,还可以即时使用手机中经过改进的模型,根据您使用手机的方式,提供个性化的体验。

主动学习 Active Learning

在线学习 Online Learning

Online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update our best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once. [wikipedia]

Multi-view Learning

Meta Learning

Multi-label Learning

Multi-output Regression

竞合学习 Coopetitive Learning

https://www.zhihu.com/question/300967426/answer/638195353

解决的问题

把一个复杂的优化问题转化为局部优化,每个局部问题用一个智能体来解决,并通过局部智能体之间的约束,保证局部优化和全局优化之间有非常强的联系。

轻量学习 Lightweight Learning

https://www.zhihu.com/question/300967426/answer/638195353

有时候巧妙的算法比算力更重要,不需要那么多的计算资源也可以解决很大规模的问题。

分布式学习 Distributed Learning

https://www.zhihu.com/question/300967426/answer/638195353

《分布式机器学习:算法、理论与实践》

成百上千台机器共同处理一个计算任务时,不能保证每台机器运算速度一致,这时同步通信就好似有短板的水桶,最后整个系统被短板拖垮。近年的热点是异步通信,但异步通信会受到延迟的困扰。当一个很慢的机器把它的陈旧的模型更新同步到全局服务器上时,可能毁掉那个被其它快机器更新了很多次的新模型。

posted @ 2018-05-01 10:08  健康平安快乐  阅读(1760)  评论(0编辑  收藏  举报