NLTK 知识整理
NLTK 知识整理
nltk.corpus模块自带语料
NLTK comes with many corpora, toy grammars, trained models, etc. A complete list is posted at: http://nltk.org/nltk_data/
- Run the Python interpreter and type the commands:
>>> import nltk
>>> nltk.download()
- Test that the data has been installed as follows. (This assumes you downloaded the Brown Corpus):
>>> from nltk.corpus import brown
>>> brown.words()
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]
API
- words(): list of str
- sents(): list of (list of str)
- paras(): list of (list of (list of str))
- tagged_words(): list of (str,str) tuple
- tagged_sents(): list of (list of (str,str))
- tagged_paras(): list of (list of (list of (str,str)))
- chunked_sents(): list of (Tree w/ (str,str) leaves)
- parsed_sents(): list of (Tree with str leaves)
- parsed_paras(): list of (list of (Tree with str leaves))
- xml(): A single xml ElementTree
- raw(): unprocessed corpus contents
For example, to read a list of the words in the Brown Corpus, use nltk.corpus.brown.words()
:
>>> from nltk.corpus import brown
>>> print(", ".join(brown.words()))
The, Fulton, County, Grand, Jury, said, ...
Tokenize 英文分词
Tokenize some text:
>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> nltk.word_tokenize(sentence)
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
References
[1] NLTK 3.2.5 documentation http://www.nltk.org/
[2] nltk.corpus package http://www.nltk.org/api/nltk.corpus.html#module-nltk.corpus
智慧在街市上呼喊,在宽阔处发声。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)