NLTK 知识整理

NLTK 知识整理

nltk.corpus模块自带语料

NLTK comes with many corpora, toy grammars, trained models, etc. A complete list is posted at: http://nltk.org/nltk_data/

  1. Run the Python interpreter and type the commands:
>>> import nltk
>>> nltk.download()
  1. Test that the data has been installed as follows. (This assumes you downloaded the Brown Corpus):
>>> from nltk.corpus import brown
>>> brown.words()
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]

API

  • words(): list of str
  • sents(): list of (list of str)
  • paras(): list of (list of (list of str))
  • tagged_words(): list of (str,str) tuple
  • tagged_sents(): list of (list of (str,str))
  • tagged_paras(): list of (list of (list of (str,str)))
  • chunked_sents(): list of (Tree w/ (str,str) leaves)
  • parsed_sents(): list of (Tree with str leaves)
  • parsed_paras(): list of (list of (Tree with str leaves))
  • xml(): A single xml ElementTree
  • raw(): unprocessed corpus contents

For example, to read a list of the words in the Brown Corpus, use nltk.corpus.brown.words():

>>> from nltk.corpus import brown
>>> print(", ".join(brown.words()))
The, Fulton, County, Grand, Jury, said, ...

Tokenize 英文分词

Tokenize some text:

>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> nltk.word_tokenize(sentence)
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']

References

[1] NLTK 3.2.5 documentation http://www.nltk.org/
[2] nltk.corpus package http://www.nltk.org/api/nltk.corpus.html#module-nltk.corpus

posted @   健康平安快乐  阅读(214)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示