Examples of Machine Learning Toolkit Usage
Examples of Machine Learning Toolkit Usage
Scikit-learn
KFold K-折交叉验证
>>> import numpy as np
>>> from sklearn.model_selection import KFold
>>> X = ["a", "b", "c", "d"]
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]
Reference : http://scikit-learn.org/stable/modules/cross_validation.html#k-fold
Decision Trees Classification 决策树分类
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
>>> clf.predict([[2., 2.]])
array([1])
Reference : http://scikit-learn.org/stable/modules/tree.html#classification
KNN k近邻
该算法可以用一句成语来帮助理解:近朱者赤近墨者黑。
from sklearn.neighbors import KNeighborsClassifier
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test)
Logistic Regression 逻辑斯蒂回归
>>> from sklearn.linear_model import LogisticRegression
>>> x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
>>> model = LogisticRegression(penalty='l2', random_state=0, solver='newton-cg', multi_class='multinomial')
>>> model = fit(x_train, y_train)
>>> y_pred = model.predict(x_test)
Leave One Out 留一法
>>> from sklearn.model_selection import LeaveOneOut
>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
>>> for train, test in loo.split(X):
... print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]
Reference : http://scikit-learn.org/stable/modules/cross_validation.html#leave-one-out-loo
train_test_split 随机分割
随机地,将数组或矩阵分割成训练集和测试集
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
参数 test_size
如果是 float,应该在0到1之间,并且代表数据集在列车分割中所包含的比例。
如果是 int,表示训练样本的绝对数量。
如果是 None,则自动将值设置为测试大小的补充。
参数 random_state
如果 int,随机状态是随机数生成器所使用的种子;
如果是 RandomState 实例,随机数是随机数生成器;
如果是 None,随机数生成器是NP-随机使用的随机状态实例。
StandardScaler 特征标准化
标准化数据特征,保证每个维度的特征数据方差为1,均值为0。使得预测结果1不会被某些维度过大的特征而主导
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
Reference: 《Python机器学习及实践》 https://book.douban.com/subject/26886337
实践
StandardScaler 在鸢尾花(Iris)数据上的表现并不好。未使用 StandardScaler 处理特征时,可以获得:
accuracy 0.947368
avg precision 0.96
avg recall 0.95
f1-score 0.95
代码如下:
# -*- encoding=utf8 -*-
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
if __name__ == '__main__':
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test)
print("accuracy is %f" % (knc.score(X_test, y_test)))
print(classification_report(y_test, y_pred, target_names=iris.target_names))
使用了 StandardScaler 以后,这四个指标反而下降了,分别如下所示:
accuracy 0.894737
avg precision 0.92
avg recall 0.89
f1-score 0.90
而使用了 StandardScaler 的代码如下:
# -*- encoding=utf8 -*-
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler
if __name__ == '__main__':
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
# 标准化数据特征,保证每个维度的特征数据方差为1,均值为0.
# 使得预测结果1不会被某些维度过大的特征而主导
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test)
print("accuracy is %f" % (knc.score(X_test, y_test)))
print(classification_report(y_test, y_pred, target_names=iris.target_names))
这是一个奇怪的问题,需要今后更进一步的探究。
shuffle 随机打乱
该函数可以随机地打乱训练数据和测试数据(让训练数据和测试数据保持对应)
from sklearn.utils import shuffle
x = [1,2,3,4]
y = [1,2,3,4]
x,y = shuffle(x,y)
Out:
x : [1,4,3,2]
y : [1,4,3,2]
Reference : http://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html
Classification Report
Presicion, recall and F1-score.
>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_test, y_pred, target_names=iris.target_names))
precision recall f1-score support
setosa 1.00 1.00 1.00 8
versicolor 0.79 1.00 0.88 11
virginica 1.00 0.84 0.91 19
accuracy 0.92 38
macro avg 0.93 0.95 0.93 38
weighted avg 0.94 0.92 0.92 38
XGBoost
from xgboost import XGBClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
if __name__ == '__main__':
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target)
xgb = XGBClassifier()
xgb.fit(x_train, y_train)
y_pred = xgb.predict(x_test)
print(classification_report(y_test, y_pred))
实验结果
precision recall f1-score support
0 1.00 1.00 1.00 14
1 0.93 1.00 0.97 14
2 1.00 0.90 0.95 10
avg / total 0.98 0.97 0.97 38