使用拉格朗日乘法证明,当两数相等时乘积最大
采用拉格朗日乘法证明:当\(x=y=\frac{c}{2}\)时,\(xy\)取得最大值
已知,C是任意大于零的常数,且 x + y = c ,证明当 \(x=y=\frac{c}{2}\) 时,\(xy\) 取得最大值。
\[ \left\{
\begin{align}
& f(x,y) = xy \\
& \phi(x,y) = x + y -c = 0
\end{align}
\right.
\]
先作拉格朗日函数
\[\begin{align}
L(x,y) = f(x,y)+ \lambda\phi(x,y) \\
\end{align}
\]
求得
\[ \left\{
\begin{align}
& f_{x}(x,y) + \lambda\phi_{x}(x,y) = 0 \\
& f_{y}(x,y) + \lambda\phi_{y}(x,y) = 0 \\
& \phi(x,y) = x + y -c = 0
\end{align}
\right.
\]
即
\[ \left\{
\begin{align}
& y + \lambda = 0 \\
& x + \lambda = 0 \\
& x + y = c
\end{align}
\right.
\]
解得
\[ \left\{
\begin{align}
& x = \frac{c}{2} \\
& y = \frac{c}{2}
\end{align}
\right.
\]
证毕
智慧在街市上呼喊,在宽阔处发声。