施密特正交化 GramSchmidt
施密特正交化 GramSchmidt
施密特正交化的原名是 Gram–Schmidt process,是由Gram和schmidt两个人一起发明的,但是后来因为施密特名气更大,所以该方法被简记为施密特正交化。
借用 《线性代数》P117-例2 的例子来运行代码。
正交化后:
单位化后:
代码实现
python3 的 sympy 包实现了 GramSchmidt 方法。
from sympy.matrices import Matrix, GramSchmidt
l = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]
o = GramSchmidt(l)
计算结果如下:
[Matrix([
[ 1],
[ 2],
[-1]]),
Matrix([
[-5/3],
[ 5/3],
[ 5/3]]),
Matrix([
[2],
[0],
[2]])]
单位化也就是在调用函数的时候传入参数。
from sympy.matrices import Matrix, GramSchmidt
l = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]
o = GramSchmidt(l, True)
计算结果如下:
[Matrix([
[ sqrt(6)/6],
[ sqrt(6)/3],
[-sqrt(6)/6]]),
Matrix([
[-sqrt(3)/3],
[ sqrt(3)/3],
[ sqrt(3)/3]]),
Matrix([
[sqrt(2)/2],
[ 0],
[sqrt(2)/2]])]
sympy.Matrix 与 Numpy 的互操作
Matrix 转 Numpy.array
import numpy as np
from sympy.matrices import Matrix, GramSchmidt
l = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]
o = GramSchmidt(l, True)
m = np.array(o)
内积计算
(m[0] * m[1]).sum()
References
[1] https://en.wikipedia.org/wiki/Gram–Schmidt_process
[2] GramSchmidt. sympy: https://docs.sympy.org/latest/modules/matrices/matrices.html?highlight=gramschmidt#sympy.matrices.dense.GramSchmidt
智慧在街市上呼喊,在宽阔处发声。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)