CRT和EXCRT简单学习笔记
中国剩余定理CRT
中国剩余定理是要求我们解决这样的一类问题:
{x≡a1(modb1)x≡a2(modb2)...x≡an(modbn)
其中b1,b2,...,bn互质。
我们先令m=∏ni=1bi,wi=m/bi
那么有gcd(m,wi)==1
我们对于wix′+my′=1解出来x′,y′后
wix′ai≡ai(modbi)
所以现在就相当于解n=∑ni=1wix′ai(modm)
一道例题 TJOI2009猜数字
题目链接:戳我
CRT的模板
有两点需要注意——一个是输入的数可能会有负数,二是乘法的时候可能会乘爆,需要用快速乘qwq
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define MAXN 1010
using namespace std;
int n;
long long a[MAXN],b[MAXN];
inline ll fmul(ll x,ll y,ll mod)
{
ll cur_ans=0;
while(y>0)
{
if(y&1)cur_ans=(cur_ans+x)%mod;
x=(x+x)%mod;
y>>=1;
}
return cur_ans;
}
inline void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0){y=0,x=1;return;}
exgcd(b,a%b,x,y);
int cur=x;
x=y;
y=cur-a/b*y;
}
inline ll china()
{
long long M=1,cur_ans=0,x,y;
for(int i=1;i<=n;i++) M*=b[i];
for(int i=1;i<=n;i++)
{
long long w=M/b[i];
exgcd(w,b[i],x,y);
x=(x%b[i]+b[i])%b[i];
cur_ans=(cur_ans+fmul(fmul(w,x,M),a[i],M))%M;
}
return (cur_ans+M)%M;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
for(int i=1;i<=n;i++) scanf("%lld",&b[i]);
for(int i=1;i<=n;i++) a[i]=(a[i]%b[i]+b[i])%b[i];
printf("%lld\n",china());
return 0;
}
拓展中国剩余定理EXCRT
就是bi不互质版本的......但是和中国剩余定理好像没有太大的关系qwq
我们假设已经解决了前k-1个方程,他们的解为ans,设m=∏k−1i=1bi。那么我们可以确定前k-1个方程的通解是ans+t∗m。
现在的任务就是寻找一个t,使得ans+t∗m≡ai(modbi)
也就是t∗m≡ai−ans(modbi)
其实就是解a≡b(modp)即ax+py=b的x′,y′的解。
t=x′/gcd(m,bi)∗(ai−ans)
ans=(ans+tm)mod(∏k−1i=1bi)
一道模板
题目链接:戳我
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 100010
#define ll long long
using namespace std;
int n;
long long a[MAXN],b[MAXN];
inline ll fmul(ll x,ll y,ll mod)
{
ll cur_ans=0;
while(y)
{
if(y&1) cur_ans=(cur_ans+x)%mod;
x=(x+x)%mod;
y>>=1;
}
return cur_ans;
}
inline ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
y=0,x=1;
return a;
}
ll ans=exgcd(b,a%b,x,y);
ll cur=x;
x=y;
y=cur-(a/b)*y;
return ans;
}
inline void solve()
{
ll ans=a[1],m=b[1],x,y;
for(int i=2;i<=n;i++)
{
ll B=((a[i]-ans)%b[i]+b[i])%b[i];
ll gcd=exgcd(m,b[i],x,y);
x=fmul(x,B/gcd,b[i]);
ans+=x*m;
m*=b[i]/gcd;
ans=(ans+m)%m;
}
printf("%lld\n",ans);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld%lld",&b[i],&a[i]);
// for(int i=1;i<=n;i++) printf("%lld %lld\n",a[i],b[i]);
solve();
return 0;
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 本地部署DeepSeek后,没有好看的交互界面怎么行!
· DeepSeek 解答了困扰我五年的技术问题。时代确实变了!
· 趁着过年的时候手搓了一个低代码框架
· 推荐一个DeepSeek 大模型的免费 API 项目!兼容OpenAI接口!