CRT和EXCRT简单学习笔记
中国剩余定理CRT
中国剩余定理是要求我们解决这样的一类问题:
\[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\\x\equiv a_n\pmod{b_n} \end{cases}
\]
其中\(b_1,b_2,...,b_n\)互质。
我们先令\(m=\prod_{i=1}^{n}b_i,w_i=m/b_i\)
那么有\(gcd(m,w_i)==1\)
我们对于\(w_ix'+my'= 1\)解出来\(x',y'\)后
\(w_ix'a_i\equiv a_i\pmod {b_i}\)
所以现在就相当于解\(n=\sum_{i=1}^n w_ix'a_i\pmod m\)
一道例题 TJOI2009猜数字
题目链接:戳我
CRT的模板
有两点需要注意——一个是输入的数可能会有负数,二是乘法的时候可能会乘爆,需要用快速乘qwq
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define MAXN 1010
using namespace std;
int n;
long long a[MAXN],b[MAXN];
inline ll fmul(ll x,ll y,ll mod)
{
ll cur_ans=0;
while(y>0)
{
if(y&1)cur_ans=(cur_ans+x)%mod;
x=(x+x)%mod;
y>>=1;
}
return cur_ans;
}
inline void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0){y=0,x=1;return;}
exgcd(b,a%b,x,y);
int cur=x;
x=y;
y=cur-a/b*y;
}
inline ll china()
{
long long M=1,cur_ans=0,x,y;
for(int i=1;i<=n;i++) M*=b[i];
for(int i=1;i<=n;i++)
{
long long w=M/b[i];
exgcd(w,b[i],x,y);
x=(x%b[i]+b[i])%b[i];
cur_ans=(cur_ans+fmul(fmul(w,x,M),a[i],M))%M;
}
return (cur_ans+M)%M;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
for(int i=1;i<=n;i++) scanf("%lld",&b[i]);
for(int i=1;i<=n;i++) a[i]=(a[i]%b[i]+b[i])%b[i];
printf("%lld\n",china());
return 0;
}
拓展中国剩余定理EXCRT
就是\(b_i\)不互质版本的......但是和中国剩余定理好像没有太大的关系qwq
我们假设已经解决了前k-1个方程,他们的解为ans,设\(m=\prod_{i=1}^{k-1}b_i\)。那么我们可以确定前k-1个方程的通解是\(ans+t*m\)。
现在的任务就是寻找一个t,使得\(ans+t*m\equiv a_i\pmod{b_i}\)
也就是\(t*m\equiv a_i-ans\pmod{b_i}\)
其实就是解\(a\equiv b\pmod {p}\)即\(ax+py=b\)的\(x',y'\)的解。
\(t=x'/gcd(m,b_i)*(a_i-ans)\)
\(ans=(ans+tm)\mod (\prod_{i=1}^{k-1}b_i)\)
一道模板
题目链接:戳我
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 100010
#define ll long long
using namespace std;
int n;
long long a[MAXN],b[MAXN];
inline ll fmul(ll x,ll y,ll mod)
{
ll cur_ans=0;
while(y)
{
if(y&1) cur_ans=(cur_ans+x)%mod;
x=(x+x)%mod;
y>>=1;
}
return cur_ans;
}
inline ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
y=0,x=1;
return a;
}
ll ans=exgcd(b,a%b,x,y);
ll cur=x;
x=y;
y=cur-(a/b)*y;
return ans;
}
inline void solve()
{
ll ans=a[1],m=b[1],x,y;
for(int i=2;i<=n;i++)
{
ll B=((a[i]-ans)%b[i]+b[i])%b[i];
ll gcd=exgcd(m,b[i],x,y);
x=fmul(x,B/gcd,b[i]);
ans+=x*m;
m*=b[i]/gcd;
ans=(ans+m)%m;
}
printf("%lld\n",ans);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld%lld",&b[i],&a[i]);
// for(int i=1;i<=n;i++) printf("%lld %lld\n",a[i],b[i]);
solve();
return 0;
}