Hadoop 生产调优手册-1
Hadoop 生产调优手册(1)
HDFS——核心参数
NameNode内存生产配置
NameNode内存计算
每个文件块大概占用150byte,一台服务器128G内存为例,能存储多少文件块呢?
128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1亿
G MB KB Byte
Hadoop2.x系列,配置NameNode内存
NameNode内存默认2000m,如果服务器内存4G,NameNode内存可以配置3g。在hadoop-env.sh文件中配置如下。
HADOOP_NAMENODE_OPTS=-Xmx3072m
Hadoop3.x系列,配置NameNode内存
hadoop-env.sh中描述Hadoop的内存是动态分配的
# The maximum amount of heap to use (Java -Xmx). If no unit # is provided, it will be converted to MB. Daemons will # prefer any Xmx setting in their respective _OPT variable. # There is no default; the JVM will autoscale based upon machine # memory size. # export HADOOP_HEAPSIZE_MAX= # The minimum amount of heap to use (Java -Xms). If no unit # is provided, it will be converted to MB. Daemons will # prefer any Xms setting in their respective _OPT variable. # There is no default; the JVM will autoscale based upon machine # memory size. # export HADOOP_HEAPSIZE_MIN= HADOOP_NAMENODE_OPTS=-Xmx102400m
查看NameNode占用内存
[atguigu@hadoop102 ~]$ jps 3088 NodeManager 2611 NameNode 3271 JobHistoryServer 2744 DataNode 3579 Jps [atguigu@hadoop102 ~]$ jmap -heap 2611 Heap Configuration: MaxHeapSize = 1031798784 (984.0MB)
查看DataNode占用内存
[atguigu@hadoop102 ~]$ jmap -heap 2744 Heap Configuration: MaxHeapSize = 1031798784 (984.0MB)
查看发现hadoop102上的NameNode和DataNode占用内存都是自动分配的,且相等。不是很合理。
经验参考
https://docs.cloudera.com/documentation/enterprise/6/release-notes/topics/rg_hardware_requirements.html#concept_fzz_dq4_gbb
具体修改:
hadoop-env.sh
export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS -Xmx1024m" export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS -Xmx1024m"
NameNode心跳并发配置

1. hdfs-site.xml
The number of Namenode RPC server threads that listen to requests from clients. If dfs.namenode.servicerpc-address is not configured then Namenode RPC server threads listen to requests from all nodes.
NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作。
对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是10。
<property>
<name>dfs.namenode.handler.count</name>
<value>21</value>
</property>
企业经验:dfs.namenode.handler.count= ,比如集群规模(DataNode台数)为3台时,此参数设置为21。可通过简单的python代码计算该值,代码如下。
[atguigu@hadoop102 ~]$ sudo yum install -y python
[atguigu@hadoop102 ~]$ python
Python 2.7.5 (default, Apr 11 2018, 07:36:10)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import math
>>> print int(20*math.log(3))
21
>>> quit()
开启回收站配置
开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。
回收站工作机制
回收站工作机制 开启回收站功能参数说明
(1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。
(2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。
(3)要求fs.trash.checkpoint.interval <= fs.trash.interval。
启用回收站
修改core-site.xml,配置垃圾回收时间为1分钟。
<property> <name>fs.trash.interval</name> <value>1</value> </property>
查看回收站
回收站目录在HDFS集群中的路径:/user/atguigu/.Trash/….
注意
注意:通过网页上直接删除的文件也不会走回收站。
通过程序删除的文件不会经过回收站,需要调用moveToTrash()才进入回收站
Trash trash = new Trash(conf); trash.moveToTrash(path);
只有在命令行利用hadoop fs -rm命令删除的文件才会走回收站
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -rm -r /user/atguigu/input 2021-07-14 16:13:42,643 INFO fs.TrashPolicyDefault: Moved: 'hdfs://hadoop102:9820/user/atguigu/input' to trash at: hdfs://hadoop102:9820/user/atguigu/.Trash/Current/user/atguigu/input
恢复回收站数据
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -mv /user/atguigu/.Trash/Current/user/atguigu/input /user/atguigu/input
本文作者:逆十字
本文链接:https://www.cnblogs.com/fengxiaolong/p/15805049.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步