快速排序时间复杂度为O(n×log(n))的证明
快速排序时间复杂度为O(n×log(n))的证明
之前只知道快速排序的平均时间复杂度为O(n×log(n)),最糟糕时复杂度为O(n^2),但却不知道具体原因,今天好好证明一下,最后部分摘自《算法导论》。
首先再介绍一遍快排的思想:
通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序的目的。
1、最优情况
在最优情况下,Partition每次都划分得很均匀,如果排序n个关键字,其递归树的深度就为 [log2n]+1( [x] 表示不大于 x 的最大整数),即仅需递归 log2n 次,需要时间为T(n)的话,第一次Partiation应该是需要对整个数组扫描一遍,做n次比较。然后,获得的枢轴将数组一分为二,那么各自还需要T(n/2)的时间(注意是最好情况,所以平分两半)。于是不断地划分下去,就有了下面的不等式推断:
这说明,在最优的情况下,快速排序算法的时间复杂度为O(nlogn)。
2、最糟糕情况
然后再来看最糟糕情况下的快排,当待排序的序列为正序或逆序排列时,且每次划分只得到一个比上一次划分少一个记录的子序列,注意另一个为空。如果递归树画出来,它就是一棵斜树。此时需要执行n‐1次递归调用,且第i次划分需要经过n‐i次关键字的比较才能找到第i个记录,也就是枢轴的位置,因此比较次数为 ,最终其时间复杂度为O(n^2)。
3、一般情况
最后来看一下一般情况,平均的情况,设枢轴的关键字应该在第k的位置(1≤k≤n),那么:
本来想按这种思路推导出来,结果发现半天推不出结果,最后去翻阅《算法导论》7.4节,发现证明过程还是蛮复杂的,我就偷懒贴一下好了~
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性
· 全网最简单!3分钟用满血DeepSeek R1开发一款AI智能客服,零代码轻松接入微信、公众号、小程