二分法和牛顿迭代实现开根号函数:OC的实现

最近有人贴出BAT的面试题,题目链接

就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法牛顿迭代,现在用OC的方法实现如下:

第一:二分法实现

-(double)sqrt_binary:(int)num {
    double x = sqrt(num);
    double y = num / 2;
    double low = 0.0;
    double up = num;
    int count = 1;

    while (fabs(y-x) > 0.000000001) {
        NSLog(@"--count:%d %f",count,y);

        count ++;
        if (y * y > num) {
            up = y;
            y = low + (up - low)/2;
        }else{
            low = y;
            y = up -(up-low)/2;
        }
    }

    return y;
}

//调用
double result = [self sqrt_binary:5];
NSLog(@"my result:%f--real result:%f",result,sqrt(5));

第二:牛顿迭代

-(double)sqrt_newton:(int)num {
double x = sqrt(num);
double y = num/2;
int count = 1;

while (fabs(y-x) > 0.000000001) {
    NSLog(@"--count:%d %f",count,y);

    count ++;

    y = (y + num/y)/2.0;
}

return y;
}

//调用
double result = [self sqrt_newton:5];
NSLog(@"my result:%f--real result:%f",result,sqrt(5));

参考 :二分法和牛顿迭代法求平方根(Python实现)

posted @ 2016-12-22 15:44  Darren.Von  阅读(1242)  评论(0编辑  收藏  举报
新浪微博:IT_攻城师,github:darren90(欢迎★star点赞)