学习记录1
1、什么是大数据
1.1、 基本概念:
-
大数据技术的核心就是数据处理
-
处理海量数据的核心技术:
-
海量数据存储:分布式
-
海量数据运算:分布式
-
-
这些核心技术都有了大量的成熟的框架
- 存储框架
- HDFS——分布式文件存储系统(HADOOP中的存储框架)
- HBASE——分布式数据库系统
- KAFKA——分布式消息缓存系统(实时流式数据处理场景中应用广泛)
- 运算框架
- MAPREDUCE—— 离线批处理/HADOOP中的运算框架
- SPARK —— 离线批处理/实时流式计算
- STORM —— 实时流式计算
- 一些辅助类的工具(可以做一些繁琐的工作)
- HIVE —— 数据仓库工具:可以接收sql,翻译成mapreduce或者spark程序运行
- FLUME——数据采集
- SQOOP——数据迁移
- ELASTIC SEARCH —— 分布式的搜索引擎
- 存储框架
1.2 、 大数据在现实生活中的具体应用
最典型的就是分析公司产品的运行情况
电商推荐系统:基于海量的浏览行为、购物行为数据,进行大量的算法模型的运算,得出各类推荐结论,以供电商网站页面来为用户进行商品推荐
精准广告推送系统:基于海量的互联网用户的各类数据,统计分析,进行用户画像(得到用户的各种属性标签),然后可以为广告主进行有针对性的精准的广告投放
2、 hadoop学习
-
Hadoop的三个核心组件
分布式文件系统:HDFS —— 实现将文件分布式存储在很多的服务器上
分布式运算编程框架:MAPREDUCE —— 实现在很多机器上分布式并行运算
分布式资源调度平台:YARN —— 帮用户调度大量的mapreduce程序,并合理分配运算资源
-
HDFS学习
-
hdfs有着文件系统共同的特征:
1、有目录结构,顶层目录是: /
2、系统中存放的就是文件
3、系统可以提供对文件的:创建、删除、修改、查看、移动等功能
-
hdfs跟普通的单机文件系统有区别:
1、单机文件系统中存放的文件,是在一台机器的操作系统中
2、hdfs的文件系统会横跨N多的机器
3、单机文件系统中存放的文件,是在一台机器的磁盘上
4、hdfs文件系统中存放的文件,是落在n多机器的本地单机文件系统中(hdfs是一个基于linux本地文件系统之上的文件系统)
-
hdfs的工作机制:
1、客户把一个文件存入hdfs,其实hdfs会把这个文件切块后,分散存储在N台linux机器系统中(负责存储文件块的角色:data node)<准确来说:切块的行为是由客户端决定的>
2、一旦文件被切块存储,那么,hdfs中就必须有一个机制,来记录用户的每一个文件的切块信息,及每一块的具体存储机器(负责记录块信息的角色是:name node)
3、为了保证数据的安全性,hdfs可以将每一个文件块在集群中存放多个副本(到底存几个副本,是由当时存入该文件的客户端指定的)
-
综述:一个hdfs系统,由一台运行了namenode的服务器,和N台运行了datanode的服务器组成!
-
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了