Spark SQL

Spark SQL and DataFrame

1.   目标

1.1.  掌握Spark SQL的原理

1.2.  掌握DataFrame数据结构和使用方式

1.3.  熟练使用Spark SQL完成计算任务

2.   Spark SQL

2.1.  Spark SQL概述

2.1.1.   什么是Spark SQL

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。

2.1.2.   Spark SQL优点

我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!

1.易整合

2.统一的数据访问方式

3.兼容Hive

4.标准的数据连接

2.2.  DataFrames

2.2.1.   什么是DataFrames

与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。由于与R和Pandas的DataFrame类似,Spark DataFrame很好地继承了传统单机数据分析的开发体验。

2.2.2.   创建DataFrames

在Spark SQL中SQLContext是创建DataFrames和执行SQL的入口,在spark-1.5.2中已经内置了一个SQLContext

1.在本地创建一个文件,有三列,分别是id、name、age,用空格分隔,然后上传到HDFS上

hdfs dfs -put person.txt /

2.在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割

val lineRDD = sc.textFile("hdfs://node1.itcast.cn:9000/person.txt").map(_.split(" "))

3.定义case class(相当于表的schema)

case class Person(id:Int, name:String, age:Int)

4.将RDD和case class关联

val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))

5.将RDD转换成DataFrame

val personDF = personRDD.toDF

6.对DataFrame进行处理

personDF.show

2.3.  DataFrame常用操作

2.3.1.   DSL风格语法

//查看DataFrame中的内容

personDF.show

//查看DataFrame部分列中的内容

personDF.select(personDF.col("name")).show

personDF.select(col("name"), col("age")).show

personDF.select("name").show

//打印DataFrame的Schema信息

personDF.printSchema

//查询所有的name和age,并将age+1

personDF.select(col("id"), col("name"), col("age") + 1).show

personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show

//过滤age大于等于18的

personDF.filter(col("age") >= 18).show

//按年龄进行分组并统计相同年龄的人数

personDF.groupBy("age").count().show()

2.3.2.   SQL风格语法

如果想使用SQL风格的语法,需要将DataFrame注册成表

personDF.registerTempTable("t_person")

//查询年龄最大的前两名

sqlContext.sql("select * from t_person order by age desc limit 2").show

//显示表的Schema信息

sqlContext.sql("desc t_person").show

3.   以编程方式执行Spark SQL查询

3.1.  编写Spark SQL查询程序

前面我们学习了如何在Spark Shell中使用SQL完成查询,现在我们来实现在自定义的程序中编写Spark SQL查询程序。首先在maven项目的pom.xml中添加Spark SQL的依赖

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.10</artifactId>
    <version>1.5.2</version>
</dependency>

 

3.1.1.   通过反射推断Schema

创建一个object为cn.itcast.spark.sql.InferringSchema

package cn.itcast.spark.sql

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext

object InferringSchema {
  def main(args: Array[String]) {

    //创建SparkConf()并设置App名称
   
val conf = new SparkConf().setAppName("SQL-1")
    //SQLContext要依赖SparkContext
   
val sc = new SparkContext(conf)
    //创建SQLContext
   
val sqlContext = new SQLContext(sc)

    //从指定的地址创建RDD
   
val lineRDD = sc.textFile(args(0)).map(_.split(" "))

    //创建case class
    //将RDD和case class关联
   
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
    //导入隐式转换,如果不到人无法将RDD转换成DataFrame
    //将RDD转换成DataFrame
   
import sqlContext.implicits._
    val personDF = personRDD.toDF
    //注册表
   
personDF.registerTempTable("t_person")
    //传入SQL
   
val df = sqlContext.sql("select * from t_person order by age desc limit 2")
    //将结果以JSON的方式存储到指定位置
   
df.write.json(args(1))
    //停止Spark Context
   
sc.stop()
  }
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
 

将程序打成jar包,上传到spark集群,提交Spark任务

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \

--class cn.itcast.spark.sql.InferringSchema \

--master spark://node1.itcast.cn:7077 \

/root/spark-mvn-1.0-SNAPSHOT.jar \

hdfs://node1.itcast.cn:9000/person.txt \

hdfs://node1.itcast.cn:9000/out

查看运行结果

hdfs dfs -cat  hdfs://node1.itcast.cn:9000/out/part-r-*

3.1.2.   通过StructType直接指定Schema

创建一个object为cn.itcast.spark.sql.SpecifyingSchema

package cn.itcast.spark.sql

import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf}

/**
  * Created by ZX on 2015/12/11.
  */
object SpecifyingSchema {
  def main(args: Array[String]) {
    //创建SparkConf()并设置App名称
   
val conf = new SparkConf().setAppName("SQL-2")
    //SQLContext要依赖SparkContext
   
val sc = new SparkContext(conf)
    //创建SQLContext
   
val sqlContext = new SQLContext(sc)
    //从指定的地址创建RDD
   
val personRDD = sc.textFile(args(0)).map(_.split(" "))
    //通过StructType直接指定每个字段的schema
   
val schema = StructType(
      List(
        StructField("id", IntegerType, true),
        StructField("name", StringType, true),
        StructField("age", IntegerType, true)
      )
    )
    //将RDD映射到rowRDD
   
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
    //将schema信息应用到rowRDD上
   
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
    //注册表
   
personDataFrame.registerTempTable("t_person")
    //执行SQL
   
val df = sqlContext.sql("select * from t_person order by age desc limit 4")
    //将结果以JSON的方式存储到指定位置
   
df.write.json(args(1))
    //停止Spark Context
   
sc.stop()
  }
}
 

将程序打成jar包,上传到spark集群,提交Spark任务

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \

--class cn.itcast.spark.sql.InferringSchema \

--master spark://node1.itcast.cn:7077 \

/root/spark-mvn-1.0-SNAPSHOT.jar \

hdfs://node1.itcast.cn:9000/person.txt \

hdfs://node1.itcast.cn:9000/out1

查看结果

hdfs dfs -cat  hdfs://node1.itcast.cn:9000/out1/part-r-*

4.   数据源

4.1.  JDBC

Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。

4.1.1.   从MySQL中加载数据(Spark Shell方式)

1.启动Spark Shell,必须指定mysql连接驱动jar包

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-shell \

--master spark://node1.itcast.cn:7077 \

--jars /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \

--driver-class-path /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar

2.从mysql中加载数据

val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://192.168.10.1:3306/bigdata", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "person", "user" -> "root", "password" -> "123456")).load()

3.执行查询

jdbcDF.show()

4.1.2.   将数据写入到MySQL中(打jar包方式)

1.编写Spark SQL程序

package cn.itcast.spark.sql

import java.util.Properties
import org.apache.spark.sql.{SQLContext, Row}
import org.apache.spark.sql.types.{StringType, IntegerType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}

object JdbcRDD {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("MySQL-Demo")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    //通过并行化创建RDD
   
val personRDD = sc.parallelize(Array("1 tom 5", "2 jerry 3", "3 kitty 6")).map(_.split(" "))
    //通过StructType直接指定每个字段的schema
   
val schema = StructType(
      List(
        StructField("id", IntegerType, true),
        StructField("name", StringType, true),
        StructField("age", IntegerType, true)
      )
    )
    //将RDD映射到rowRDD
   
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
    //将schema信息应用到rowRDD上
   
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
    //创建Properties存储数据库相关属性
   
val prop = new Properties()
    prop.put("user", "root")
    prop.put("password", "123456")
    //将数据追加到数据库
   
personDataFrame.write.mode("append").jdbc("jdbc:mysql://192.168.10.1:3306/bigdata", "bigdata.person", prop)
    //停止SparkContext
   
sc.stop()
  }
}
 

 

2.用maven将程序打包

3.将Jar包提交到spark集群

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \

--class cn.itcast.spark.sql.JdbcRDD \

--master spark://node1.itcast.cn:7077 \

--jars /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \

--driver-class-path /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \

/root/spark-mvn-1.0-SNAPSHOT.jar

posted @ 2019-03-15 17:33  烽火连城516  阅读(283)  评论(0编辑  收藏  举报