大三寒假学习 spark学习 RDD的依赖关系和运行过程

窄依赖与宽依赖的区别:

窄依赖:表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区

宽依赖:表现为存在一个父RDD的一个分区对应一个子RDD的多个分区

Stage的划分:

   Spark通过分析各个RDD的依赖关系生成了DAG再通过分析各个RDD中的分区之间的依赖关系来决定如何划分Stage

根据RDD分区的依赖关系划分Stage:

  

 

Stage的划分:

  •  在DAG中进行反向解析,遇到宽依赖就断开
  •  遇到窄依赖就把当前的RDD加入到Stage中
  •  将窄依赖尽量划分在同一个Stage中,可以实现流水线计算

 RDD运行过程:

  • 创建RDD对象
  • SparkContext负责计算RDD之间的依赖关系,构建DAG
  • DAGScheduler负责把DAG图分解成多个Stage每个Stage中包含了多个Task每个Task会被TaskScheduler分发给各个WorkerNode上的Executor去执行

RDD在Spark中的运行过程:

   

 

posted @   风吹过半夏  阅读(106)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Ollama——大语言模型本地部署的极速利器
· 使用C#创建一个MCP客户端
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· Windows编程----内核对象竟然如此简单?
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
历史上的今天:
2021-01-20 大二寒假作业之《构建之法》读后感1
点击右上角即可分享
微信分享提示