spark开发环境配置
以后spark,mapreduce,mpi可能三者集于同一平台,各自的侧重点有所不用,相当于云计算与高性能计算的集合,互补,把spark的基础看了看,现在把开发环境看看,主要是看源码,最近Apache Spark源码走读系列挺好的,看了些。具体环境配置不是太复杂,具体可以看https://github.com/apache/spark
1、代码下载
git clone
https://github.com/apache/spark.git
2、直接构建spark
我是基于hadoop2.2.0的,因此执行如下:
SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly
3、具体使用参考https://github.com/apache/spark
Interactive Scala Shell
The easiest way to start using Spark is through the Scala shell:
./bin/spark-shell
Try the following command, which should return 1000:
scala> sc.parallelize(1 to 1000).count()
Interactive Python Shell
Alternatively, if you prefer Python, you can use the Python shell:
./bin/pyspark
And run the following command, which should also return 1000:
>>> sc.parallelize(range(1000)).count()
Example Programs
Spark also comes with several sample programs in the examples
directory. To run one of them, use./bin/run-example <class> [params]
. For example:
./bin/run-example SparkPi
will run the Pi example locally.
You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples
package. For instance:
MASTER=spark://host:7077 ./bin/run-example SparkPi
Many of the example programs print usage help if no params are given.
Running Tests
Testing first requires building Spark. Once Spark is built, tests can be run using:
./sbt/sbt test
使用IDE,安装 Intellj Idea,并安装scala插件
去idea官网下载idea的tar.gz包,解压就行。运行idea,安装scala插件。
在源码根目录,使用如下命令
./sbt/sbt gen-idea
就生成了idea项目文件。使用 idea,点击File->Open project
,浏览到 incubator-spark
文件夹,打开项目,就可以修改Spark代码了。
具体参考:https://github.com/apache/spark
http://cn.soulmachine.me/blog/20140130/