SQLite的文件锁、并发与pager---(SQLite学习手册(锁和并发控制))
一、概述:
在SQLite中,锁和并发控制机制都是由pager_module模块负责处理的,如ACID(Atomic, Consistent, Isolated, and Durable)。在含有数据修改的事务中,该模块将确保或者所有的数据修改全部提交,或者全部回滚。与此同时,该模块还提供了一些磁盘文件的内存Cache功能。
事实上,pager_module模块并不关心数据库存储的细节,如B-Tree、编码方式、索引等,它只是将其视为由统一大小(通常为1024字节)的数据块构成的单一文件,其中每个块被称为一个页(page)。在该模块中页的起始编号为1,即第一个页的索引值是1,其后的页编号以此类推。
二、文件锁:
在SQLite的当前版本中,主要提供了以下五种方式的文件锁状态。
1). UNLOCKED:
文件没有持有任何锁,即当前数据库不存在任何读或写的操作。其它的进程可以在该数据库上执行任意的读写操作。此状态为缺省状态。
2). SHARED:
在此状态下,该数据库可以被读取但是不能被写入。在同一时刻可以有任意数量的进程在同一个数据库上持有共享锁,因此读操作是并发的。换句话说,只要有一个或多个共享锁处于活动状态,就不再允许有数据库文件写入的操作存在。
3). RESERVED:
假如某个进程在将来的某一时刻打算在当前的数据库中执行写操作,然而此时只是从数据库中读取数据,那么我们就可以简单的理解为数据库文件此时已经拥有了保留锁。当保留锁处于活动状态时,该数据库只能有一个或多个共享锁存在,即同一数据库的同一时刻只能存在一个保留锁和多个共享锁。在Oracle中此类锁被称之为预写锁,不同的是Oracle中锁的粒度可以细化到表甚至到行,因此该种锁在Oracle中对并发的影响程序不像SQLite中这样大。
4). PENDING:
PENDING锁的意思是说,某个进程正打算在该数据库上执行写操作,然而此时该数据库中却存在很多共享锁(读操作),那么该写操作就必须处于等待状态,即等待所有共享锁消失为止,与此同时,新的读操作将不再被允许,以防止写锁饥饿的现象发生。在此等待期间,该数据库文件的锁状态为PENDING,在等到所有共享锁消失以后,PENDING锁状态的数据库文件将在获取排他锁之后进入EXCLUSIVE状态。
5). EXCLUSIVE:
在执行写操作之前,该进程必须先获取该数据库的排他锁。然而一旦拥有了排他锁,任何其它锁类型都不能与之共存。因此,为了最大化并发效率,SQLite将会最小化排他锁被持有的时间总量。
最后需要说明的是,和其它关系型数据库相比,如MySQL、Oracle等,SQLite数据库中所有的数据都存储在同一文件中,与此同时,它却仅仅提供了粗粒度的文件锁,因此,SQLite在并发性和伸缩性等方面和其它关系型数据库还是无法比拟的。由此可见,SQLite有其自身的适用场景,就如在本系列开篇中所说,它和其它关系型数据库之间的互换性还是非常有限的。
http://www.cnblogs.com/stephen-liu74/archive/2012/01/22/2328753.html
2.0 Overview
Locking and concurrency control are handled by the pager module. The pager module is responsible for making SQLite "ACID" (Atomic, Consistent, Isolated, and Durable). The pager module makes sure changes happen all at once, that either all changes occur or none of them do, that two or more processes do not try to access the database in incompatible ways at the same time, and that once changes have been written they persist until explicitly deleted. The pager also provides a memory cache of some of the contents of the disk file.
The pager is unconcerned with the details of B-Trees, text encodings, indices, and so forth. From the point of view of the pager the database consists of a single file of uniform-sized blocks. Each block is called a "page" and is usually 1024 bytes in size. The pages are numbered beginning with 1. So the first 1024 bytes of the database are called "page 1" and the second 1024 bytes are call "page 2" and so forth. All other encoding details are handled by higher layers of the library. The pager communicates with the operating system using one of several modules (Examples: os_unix.c, os_win.c) that provides a uniform abstraction for operating system services.
The pager module effectively controls access for separate threads, or separate processes, or both. Throughout this document whenever the word "process" is written you may substitute the word "thread" without changing the truth of the statement.
3.0 Locking
From the point of view of a single process, a database file can be in one of five locking states:
UNLOCKED |
No locks are held on the database. The database may be neither read nor written. Any internally cached data is considered suspect and subject to verification against the database file before being used. Other processes can read or write the database as their own locking states permit. This is the default state. |
SHARED |
The database may be read but not written. Any number of processes can hold SHARED locks at the same time, hence there can be many simultaneous readers. But no other thread or process is allowed to write to the database file while one or more SHARED locks are active. |
RESERVED |
A RESERVED lock means that the process is planning on writing to the database file at some point in the future but that it is currently just reading from the file. Only a single RESERVED lock may be active at one time, though multiple SHARED locks can coexist with a single RESERVED lock. RESERVED differs from PENDING in that new SHARED locks can be acquired while there is a RESERVED lock. |
PENDING |
A PENDING lock means that the process holding the lock wants to write to the database as soon as possible and is just waiting on all current SHARED locks to clear so that it can get an EXCLUSIVE lock. No new SHARED locks are permitted against the database if a PENDING lock is active, though existing SHARED locks are allowed to continue. |
EXCLUSIVE |
An EXCLUSIVE lock is needed in order to write to the database file. Only one EXCLUSIVE lock is allowed on the file and no other locks of any kind are allowed to coexist with an EXCLUSIVE lock. In order to maximize concurrency, SQLite works to minimize the amount of time that EXCLUSIVE locks are held. |
The operating system interface layer understands and tracks all five locking states described above. The pager module only tracks four of the five locking states. A PENDING lock is always just a temporary stepping stone on the path to an EXCLUSIVE lock and so the pager module does not track PENDING locks.
https://sqlite.org/lockingv3.html
2. File locking problems
SQLite uses file locks on the database file, and on the write-ahead log or WAL file, to coordinate access between concurrent processes. Without coordination, two threads or processes might try to make incompatible changes to a database file at the same time, resulting in database corruption.
https://sqlite.org/howtocorrupt.html