20221320冯泰瑞-实验二密码算法实现-4-6学时实践过程记录

20221320冯泰瑞-实验二密码算法实现-4-6学时实践过程记录

1.在Ubuntu或openEuler中(推荐openEuler)中调试运行教材提供的源代码,至少运行SM2,SM3,SM4代码,使用GmSSL命令验证你代码的正确性,使用Markdown记录详细记录实践过程,每完成一项功能或者一个函数gitcommit一次。(15分)

SM2

加密解密

源代码运行
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ tree
.
├── kdf.c
├── kdf.h
├── Makefile
├── miracl.h
├── mirdef.h
├── SM2_ENC.c
├── SM2_ENC.h
└── test.c

1 directory, 8 files
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat kdf.h

#include "SM2_ENC.h"
#include <string.h>
#define SM3_len 256
#define SM3_T1 0x79CC4519
#define SM3_T2 0x7A879D8A
#define SM3_IVA 0x7380166f
#define SM3_IVB 0x4914b2b9
#define SM3_IVC 0x172442d7
#define SM3_IVD 0xda8a0600
#define SM3_IVE 0xa96f30bc
#define SM3_IVF 0x163138aa
#define SM3_IVG 0xe38dee4d
#define SM3_IVH 0xb0fb0e4e
/* Various logical functions */
#define SM3_p1(x) (x^SM3_rotl32(x,15)^SM3_rotl32(x,23))
#define SM3_p0(x) (x^SM3_rotl32(x,9)^SM3_rotl32(x,17))
#define SM3_ff0(a,b,c) (a^b^c)
#define SM3_ff1(a,b,c) ((a&b)|(a&c)|(b&c))
#define SM3_gg0(e,f,g) (e^f^g)
#define SM3_gg1(e,f,g) ((e&f)|((~e)&g))
#define SM3_rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
#define SM3_rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
typedef struct {
	unsigned long state[8];
	unsigned long length;
	unsigned long curlen;
	unsigned char buf[64];
} SM3_STATE;
void BiToWj(unsigned long Bi[], unsigned long Wj[]);
void WjToWj1(unsigned long Wj[], unsigned long Wj1[]);
void CF(unsigned long Wj[], unsigned long Wj1[], unsigned long V[]);
void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[]);
void SM3_init(SM3_STATE *md);
void SM3_process(SM3_STATE * md, unsigned char buf[], int len);
void SM3_done(SM3_STATE *md, unsigned char *hash);
void SM3_compress(SM3_STATE * md);
void SM3_256(unsigned char buf[], int len, unsigned char hash[]);
void SM3_KDF(unsigned char *Z, unsigned short zlen, unsigned short klen, unsigned char *K);
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat kdf.c
#include "kdf.h"
/****************************************************************
Function: BiToW
Description: calculate W from Bi
Calls:
Called By: SM3_compress
Input: Bi[16] //a block of a message
Output: W[68]
Return: null
Others:
****************************************************************/
void BiToW(unsigned long Bi[], unsigned long W[])
{
	int i;
	unsigned long tmp;
	for (i = 0; i <= 15; i++)
	{
		W[i] = Bi[i];
	}
	for (i = 16; i <= 67; i++)
	{
		tmp = W[i - 16]
			^ W[i - 9]
			^ SM3_rotl32(W[i - 3], 15);
		W[i] = SM3_p1(tmp)
			^ (SM3_rotl32(W[i - 13], 7))
			^ W[i - 6];
	}
}
/*****************************************************************
Function: WToW1
Description: calculate W1 from W
Calls:
Called By: SM3_compress
Input: W[68]
Output: W1[64]
Return: null
Others:
*****************************************************************/
void WToW1(unsigned long W[], unsigned long W1[])
{
	int i;
	for (i = 0; i <= 63; i++)
	{
		W1[i] = W[i] ^ W[i + 4];
	}
}
/******************************************************************
Function: CF
Description: calculate the CF compress function and update V
Calls:
Called By: SM3_compress
Input: W[68]
W1[64]
V[8]
Output: V[8]
Return: null
Others:
********************************************************************/
void CF(unsigned long W[], unsigned long W1[], unsigned long V[])
{
	unsigned long SS1;
	unsigned long SS2;
	unsigned long TT1;
	unsigned long TT2;
	unsigned long A, B, C, D, E, F, G, H;
	unsigned long T = SM3_T1;
	unsigned long FF;
	unsigned long GG;
	int j;
	//reg init,set ABCDEFGH=V0
	A = V[0];
	B = V[1];
	C = V[2];
	D = V[3];
	E = V[4];
	F = V[5];
	G = V[6];
	H = V[7];
	for (j = 0; j <= 63; j++)
	{
		//SS1
		if (j == 0)
		{
			T = SM3_T1;
		}
		else if (j == 16)
		{
			T = SM3_rotl32(SM3_T2, 16);
		}
		else
		{
			T = SM3_rotl32(T, 1);
		}
		SS1 = SM3_rotl32((SM3_rotl32(A, 12) + E + T), 7);
		//SS2
		SS2 = SS1 ^ SM3_rotl32(A, 12);
		//TT1
		if (j <= 15)
		{
			FF = SM3_ff0(A, B, C);
		}
		else
		{
			FF = SM3_ff1(A, B, C);
		}
		TT1 = FF + D + SS2 + *W1;
		W1++;
		//TT2
		if (j <= 15)
		{
			GG = SM3_gg0(E, F, G);
		}
		else
		{
			GG = SM3_gg1(E, F, G);
		}
		TT2 = GG + H + SS1 + *W;
		W++;
		//D
		D = C;
		//C
		C = SM3_rotl32(B, 9);
		//B
		B = A;
		//A
		A = TT1;
		//H
		H = G;
		//G
		G = SM3_rotl32(F, 19);
		//F
		F = E;
		//E
		E = SM3_p0(TT2);
	}
	//update V
	V[0] = A ^ V[0];
	V[1] = B ^ V[1];
	V[2] = C ^ V[2];
	V[3] = D ^ V[3];
	V[4] = E ^ V[4];
	V[5] = F ^ V[5];
	V[6] = G ^ V[6];
	V[7] = H ^ V[7];
}
/******************************************************************************
Function: BigEndian
Description: unsigned int endian converse.GM/T 0004-2012 requires to use big-endian.
if CPU uses little-endian, BigEndian function is a necessary
call to change the little-endian format into big-endian format.
Calls:
Called By: SM3_compress, SM3_done
Input: src[bytelen]
bytelen
Output: des[bytelen]
Return: null
Others: src and des could implies the same address
*******************************************************************************/
void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[])
{
	unsigned char tmp = 0;
	unsigned long i = 0;
	for (i = 0; i < bytelen / 4; i++)
	{
		tmp = des[4 * i];
		des[4 * i] = src[4 * i + 3];
		src[4 * i + 3] = tmp;
		tmp = des[4 * i + 1];
		des[4 * i + 1] = src[4 * i + 2];
		des[4 * i + 2] = tmp;
	}
}
/******************************************************************************
Function: SM3_init
Description: initiate SM3 state
Calls:
Called By: SM3_256
Input: SM3_STATE *md
Output: SM3_STATE *md
Return: null
Others:
*******************************************************************************/
void SM3_init(SM3_STATE *md)
{
	md->curlen = md->length = 0;
	md->state[0] = SM3_IVA;
	md->state[1] = SM3_IVB;
	md->state[2] = SM3_IVC;
	md->state[3] = SM3_IVD;
	md->state[4] = SM3_IVE;
	md->state[5] = SM3_IVF;
	md->state[6] = SM3_IVG;
	md->state[7] = SM3_IVH;
}
/******************************************************************************
Function: SM3_compress
Description: compress a single block of message
Calls: BigEndian
BiToW
WToW1
CF
Called By: SM3_256
Input: SM3_STATE *md
Output: SM3_STATE *md
Return: null
Others:
*******************************************************************************/
void SM3_compress(SM3_STATE * md)
{
	unsigned long W[68];
	unsigned long W1[64];
	//if CPU uses little-endian, BigEndian function is a necessary call
	BigEndian(md->buf, 64, md->buf);
	BiToW((unsigned long *)md->buf, W);
	WToW1(W, W1);
	CF(W, W1, md->state);
}
/******************************************************************************
Function: SM3_process
Description: compress the first (len/64) blocks of message
Calls: SM3_compress
Called By: SM3_256
Input: SM3_STATE *md
unsigned char buf[len] //the input message
int len //bytelen of message
Output: SM3_STATE *md
Return: null
Others:
*******************************************************************************/
void SM3_process(SM3_STATE * md, unsigned char *buf, int len)
{
	while (len--)
	{
		/* copy byte */
		md->buf[md->curlen] = *buf++;
		md->curlen++;
		/* is 64 bytes full? */
		if (md->curlen == 64)
		{
			SM3_compress(md);
			md->length += 512;
			md->curlen = 0;
		}
	}
}
/******************************************************************************
Function: SM3_done
Description: compress the rest message that the SM3_process has left behind
Calls: SM3_compress
Called By: SM3_256
Input: SM3_STATE *md
Output: unsigned char *hash
Return: null
Others:
*******************************************************************************/
void SM3_done(SM3_STATE *md, unsigned char hash[])
{
	int i;
	unsigned char tmp = 0;
	/* increase the bit length of the message */
	md->length += md->curlen << 3;
	/* append the '1' bit */
	md->buf[md->curlen] = 0x80;
	md->curlen++;
	/* if the length is currently above 56 bytes, appends zeros till
	it reaches 64 bytes, compress the current block, creat a new
	block by appending zeros and length,and then compress it
	*/
	if (md->curlen > 56)
	{
		for (; md->curlen < 64;)
		{
			md->buf[md->curlen] = 0;
			md->curlen++;
		}
		SM3_compress(md);
		md->curlen = 0;
	}
	/* if the length is less than 56 bytes, pad upto 56 bytes of zeroes */
	for (; md->curlen < 56;)
	{
		md->buf[md->curlen] = 0;
		md->curlen++;
	}
	/* since all messages are under 2^32 bits we mark the top bits zero */
	for (i = 56; i < 60; i++)
	{
		md->buf[i] = 0;
	}
	/* append length */
	md->buf[63] = md->length & 0xff;
	md->buf[62] = (md->length >> 8) & 0xff;
	md->buf[61] = (md->length >> 16) & 0xff;
	md->buf[60] = (md->length >> 24) & 0xff;
	SM3_compress(md);
	/* copy output */
	memcpy(hash, md->state, SM3_len / 8);
	BigEndian(hash, SM3_len / 8, hash);//if CPU uses little-endian, BigEndian function is a necessary call
}
/******************************************************************************
Function: SM3_256
Description: calculate a hash value from a given message
Calls: SM3_init
SM3_process
SM3_done
Called By:
Input: unsigned char buf[len] //the input message
int len //bytelen of the message
Output: unsigned char hash[32]
Return: null
Others:
*******************************************************************************/
void SM3_256(unsigned char buf[], int len, unsigned char hash[])
{
	SM3_STATE md;
	SM3_init(&md);
	SM3_process(&md, buf, len);
	SM3_done(&md, hash);
}
/******************************************************************************
Function: SM3_KDF
Description: key derivation function
Calls: SM3_init
SM3_process
SM3_done
Called By:
Input: unsigned char Z[zlen]
unsigned short zlen //bytelen of Z
unsigned short klen //bytelen of K
Output: unsigned char K[klen] //shared secret key
Return: null
Others:
*******************************************************************************/
void SM3_KDF(unsigned char Z[], unsigned short zlen, unsigned short klen, unsigned char K[])
{
	unsigned short i, j, t;
	unsigned int bitklen;
	SM3_STATE md;
	unsigned char Ha[SM2_NUMWORD];
	unsigned char ct[4] = { 0,0,0,1 };
	bitklen = klen * 8;
	if (bitklen%SM2_NUMBITS)
		t = bitklen / SM2_NUMBITS + 1;
	else
		t = bitklen / SM2_NUMBITS;
	//s4: K=Ha1||Ha2||...
	for (i = 1; i < t; i++)
	{
		//s2: Hai=Hv(Z||ct)
		SM3_init(&md);
		SM3_process(&md, Z, zlen);
		SM3_process(&md, ct, 4);
		SM3_done(&md, Ha);
		memcpy((K + SM2_NUMWORD * (i - 1)), Ha, SM2_NUMWORD);
		if (ct[3] == 0xff)
		{
			ct[3] = 0;
			if (ct[2] == 0xff)
			{
				ct[2] = 0;
				if (ct[1] == 0xff)
				{
					ct[1] = 0;
					ct[0]++;
				}
				else ct[1]++;
			}
			else ct[2]++;
		}
		else ct[3]++;
	}
	//s3: klen/v       �0�6   
	SM3_init(&md);
	SM3_process(&md, Z, zlen);
	SM3_process(&md, ct, 4);
	SM3_done(&md, Ha);
	if (bitklen%SM2_NUMBITS)
	{
		i = (SM2_NUMBITS - bitklen + SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
		j = (bitklen - SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, j);
	}
	else
	{
		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, SM2_NUMWORD);
	}
}
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat miracl.h
/***************************************************************************
                                                                           *
Copyright 2013 CertiVox UK Ltd.                                           *
                                                                           *
This file is part of CertiVox MIRACL Crypto SDK.                           *
                                                                           *
The CertiVox MIRACL Crypto SDK provides developers with an                 *
extensive and efficient set of cryptographic functions.                    *
For further information about its features and functionalities please      *
refer to http://www.certivox.com                                           *
                                                                           *
* The CertiVox MIRACL Crypto SDK is free software: you can                 *
  redistribute it and/or modify it under the terms of the                  *
  GNU Affero General Public License as published by the                    *
  Free Software Foundation, either version 3 of the License,               *
  or (at your option) any later version.                                   *
                                                                           *
* The CertiVox MIRACL Crypto SDK is distributed in the hope                *
  that it will be useful, but WITHOUT ANY WARRANTY; without even the       *
  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
  See the GNU Affero General Public License for more details.              *
                                                                           *
* You should have received a copy of the GNU Affero General Public         *
  License along with CertiVox MIRACL Crypto SDK.                           *
  If not, see <http://www.gnu.org/licenses/>.                              *
                                                                           *
You can be released from the requirements of the license by purchasing     *
a commercial license. Buying such a license is mandatory as soon as you    *
develop commercial activities involving the CertiVox MIRACL Crypto SDK     *
without disclosing the source code of your own applications, or shipping   *
the CertiVox MIRACL Crypto SDK with a closed source product.               *
                                                                           *
***************************************************************************/

#ifndef MIRACL_H
#define MIRACL_H

/*
 *   main MIRACL header - miracl.h.
 */

#include "mirdef.h"

/* Some modifiable defaults... */

/* Use a smaller buffer if space is limited, don't be so wasteful! */

#ifdef MR_STATIC
#define MR_DEFAULT_BUFFER_SIZE 260
#else
#define MR_DEFAULT_BUFFER_SIZE 1024
#endif

/* see mrgf2m.c */

#ifndef MR_KARATSUBA
#define MR_KARATSUBA 2
#endif

#ifndef MR_DOUBLE_BIG

#ifdef MR_KCM
  #ifdef MR_FLASH
    #define MR_SPACES 32
  #else
    #define MR_SPACES 31
  #endif
#else
  #ifdef MR_FLASH
    #define MR_SPACES 28
  #else
    #define MR_SPACES 27
  #endif
#endif

#else

#ifdef MR_KCM
  #ifdef MR_FLASH
    #define MR_SPACES 44
  #else
    #define MR_SPACES 43
  #endif
#else
  #ifdef MR_FLASH
    #define MR_SPACES 40
  #else
    #define MR_SPACES 39
  #endif
#endif

#endif

/* To avoid name clashes - undefine this */

/* #define compare mr_compare */

#ifdef MR_AVR
#include <avr/pgmspace.h>
#endif

/* size of bigs and elliptic curve points for memory allocation from stack or heap */

#define MR_ROUNDUP(a,b) ((a)-1)/(b)+1

#define MR_SL sizeof(long)

#ifdef MR_STATIC

#define MR_SIZE (((sizeof(struct bigtype)+(MR_STATIC+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
#define MR_BIG_RESERVE(n) ((n)*MR_SIZE+MR_SL)

#ifdef MR_AFFINE_ONLY
#define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
#else
#define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(3))-1)/MR_SL+1)*MR_SL
#endif
#define MR_ECP_RESERVE(n) ((n)*MR_ESIZE+MR_SL)

#define MR_ESIZE_A (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
#define MR_ECP_RESERVE_A(n) ((n)*MR_ESIZE_A+MR_SL)


#endif

/* useful macro to convert size of big in words, to size of required structure */

#define mr_size(n) (((sizeof(struct bigtype)+((n)+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
#define mr_big_reserve(n,m) ((n)*mr_size(m)+MR_SL)

#define mr_esize_a(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
#define mr_ecp_reserve_a(n,m) ((n)*mr_esize_a(m)+MR_SL)

#ifdef MR_AFFINE_ONLY
#define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
#else
#define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(3,(n)))-1)/MR_SL+1)*MR_SL 
#endif
#define mr_ecp_reserve(n,m) ((n)*mr_esize(m)+MR_SL)


/* if basic library is static, make sure and use static C++ */

#ifdef MR_STATIC
 #ifndef BIGS
  #define BIGS MR_STATIC
 #endif
 #ifndef ZZNS
  #define ZZNS MR_STATIC
 #endif
 #ifndef GF2MS
  #define GF2MS MR_STATIC
 #endif
#endif

#ifdef __ia64__
#if MIRACL==64
#define MR_ITANIUM
#include <ia64intrin.h>
#endif
#endif

#ifdef _M_X64
#ifdef _WIN64
#if MIRACL==64
#define MR_WIN64
#include <intrin.h>
#endif
#endif
#endif

#ifndef MR_NO_FILE_IO
#include <stdio.h>
#endif
               /* error returns */

#define MR_ERR_BASE_TOO_BIG       1
#define MR_ERR_DIV_BY_ZERO        2
#define MR_ERR_OVERFLOW           3
#define MR_ERR_NEG_RESULT         4
#define MR_ERR_BAD_FORMAT         5
#define MR_ERR_BAD_BASE           6
#define MR_ERR_BAD_PARAMETERS     7
#define MR_ERR_OUT_OF_MEMORY      8
#define MR_ERR_NEG_ROOT           9
#define MR_ERR_NEG_POWER         10
#define MR_ERR_BAD_ROOT          11
#define MR_ERR_INT_OP            12
#define MR_ERR_FLASH_OVERFLOW    13
#define MR_ERR_TOO_BIG           14
#define MR_ERR_NEG_LOG           15
#define MR_ERR_DOUBLE_FAIL       16
#define MR_ERR_IO_OVERFLOW       17
#define MR_ERR_NO_MIRSYS         18
#define MR_ERR_BAD_MODULUS       19
#define MR_ERR_NO_MODULUS        20
#define MR_ERR_EXP_TOO_BIG       21
#define MR_ERR_NOT_SUPPORTED     22
#define MR_ERR_NOT_DOUBLE_LEN    23
#define MR_ERR_NOT_IRREDUC       24
#define MR_ERR_NO_ROUNDING       25
#define MR_ERR_NOT_BINARY        26
#define MR_ERR_NO_BASIS          27
#define MR_ERR_COMPOSITE_MODULUS 28
#define MR_ERR_DEV_RANDOM        29

               /* some useful definitions */

#define forever for(;;)   

#define mr_abs(x)  ((x)<0? (-(x)) : (x))

#ifndef TRUE
  #define TRUE 1
#endif
#ifndef FALSE
  #define FALSE 0
#endif

#define OFF 0
#define ON 1
#define PLUS 1
#define MINUS (-1)

#define M1 (MIRACL-1)
#define M2 (MIRACL-2)
#define M3 (MIRACL-3)
#define M4 (MIRACL-4)
#define TOPBIT ((mr_small)1<<M1)
#define SECBIT ((mr_small)1<<M2)
#define THDBIT ((mr_small)1<<M3)
#define M8 (MIRACL-8)

#define MR_MAXDEPTH 24
                              /* max routine stack depth */
/* big and flash variables consist of an encoded length, *
 * and an array of mr_smalls containing the digits       */

#ifdef MR_COUNT_OPS
extern int fpm2,fpi2,fpc,fpa,fpx;
#endif

typedef int BOOL;

#define MR_BYTE unsigned char

#ifdef MR_BITSINCHAR
 #if MR_BITSINCHAR == 8
  #define MR_TOBYTE(x) ((MR_BYTE)(x))
 #else
  #define MR_TOBYTE(x) ((MR_BYTE)((x)&0xFF))
 #endif
#else
 #define MR_TOBYTE(x) ((MR_BYTE)(x))
#endif

#ifdef MR_FP

  typedef mr_utype mr_small;
  #ifdef mr_dltype
  typedef mr_dltype mr_large;
  #endif

  #define MR_DIV(a,b)    (modf((a)/(b),&dres),dres)

  #ifdef MR_FP_ROUNDING

/* slightly dicey - for example the optimizer might remove the MAGIC ! */

    #define MR_LROUND(a)   ( ( (a) + MR_MAGIC ) - MR_MAGIC )
  #else
    #define MR_LROUND(a)   (modfl((a),&ldres),ldres)
  #endif

  #define MR_REMAIN(a,b) ((a)-(b)*MR_DIV((a),(b)))

#else

  typedef unsigned mr_utype mr_small;
  #ifdef mr_dltype
    typedef unsigned mr_dltype mr_large;
  #endif
  #ifdef mr_qltype
    typedef unsigned mr_qltype mr_vlarge;
  #endif

  #define MR_DIV(a,b)    ((a)/(b))
  #define MR_REMAIN(a,b) ((a)%(b))
  #define MR_LROUND(a)   ((a))
#endif


/* It might be wanted to change this to unsigned long */

typedef unsigned int mr_lentype;

struct bigtype
{
    mr_lentype len;
    mr_small *w;
};                

typedef struct bigtype *big;
typedef big zzn;

typedef big flash;

#define MR_MSBIT ((mr_lentype)1<<(MR_IBITS-1))

#define MR_OBITS (MR_MSBIT-1)

#if MIRACL >= MR_IBITS
#define MR_TOOBIG (1<<(MR_IBITS-2))
#else
#define MR_TOOBIG (1<<(MIRACL-1))
#endif

#ifdef  MR_FLASH
#define MR_EBITS (8*sizeof(double) - MR_FLASH)
                                  /* no of Bits per double exponent */
#define MR_BTS 16
#define MR_MSK 0xFFFF

#endif

/* Default Hash function output size in bytes */
#define MR_HASH_BYTES     32

/* Marsaglia & Zaman Random number generator */
/*         constants      alternatives       */
#define NK   37           /* 21 */
#define NJ   24           /*  6 */
#define NV   14           /*  8 */

/* Use smaller values if memory is precious */

#ifdef mr_dltype

#ifdef MR_LITTLE_ENDIAN 
#define MR_BOT 0
#define MR_TOP 1
#endif
#ifdef MR_BIG_ENDIAN
#define MR_BOT 1
#define MR_TOP 0
#endif

union doubleword
{
    mr_large d;
    mr_small h[2];
};

#endif

/* chinese remainder theorem structures */

typedef struct {
big *C;
big *V;
big *M;
int NP;
} big_chinese;

typedef struct {
mr_utype *C;
mr_utype *V;
mr_utype *M;
int NP;
} small_chinese;

/* Cryptographically strong pseudo-random number generator */

typedef struct {
mr_unsign32 ira[NK];  /* random number...   */
int         rndptr;   /* ...array & pointer */
mr_unsign32 borrow;
int pool_ptr;
char pool[MR_HASH_BYTES];    /* random pool */
} csprng;

/* secure hash Algorithm structure */

typedef struct {
mr_unsign32 length[2];
mr_unsign32 h[8];
mr_unsign32 w[80];
} sha256;

typedef sha256 sha;

#ifdef mr_unsign64

typedef struct {
mr_unsign64 length[2];
mr_unsign64 h[8];
mr_unsign64 w[80];
} sha512;

typedef sha512 sha384;

typedef struct {
mr_unsign64 length;
mr_unsign64 S[5][5];
int rate,len;
} sha3;

#endif

/* Symmetric Encryption algorithm structure */

#define MR_ECB   0
#define MR_CBC   1
#define MR_CFB1  2
#define MR_CFB2  3
#define MR_CFB4  5
#define MR_PCFB1 10
#define MR_PCFB2 11
#define MR_PCFB4 13
#define MR_OFB1  14
#define MR_OFB2  15
#define MR_OFB4  17
#define MR_OFB8  21
#define MR_OFB16 29

typedef struct {
int Nk,Nr;
int mode;
mr_unsign32 fkey[60];
mr_unsign32 rkey[60];
char f[16];
} aes;

/* AES-GCM suppport. See mrgcm.c */

#define GCM_ACCEPTING_HEADER 0
#define GCM_ACCEPTING_CIPHER 1
#define GCM_NOT_ACCEPTING_MORE 2
#define GCM_FINISHED 3
#define GCM_ENCRYPTING 0
#define GCM_DECRYPTING 1

typedef struct {
mr_unsign32 table[128][4]; /* 2k bytes */
MR_BYTE stateX[16];
MR_BYTE Y_0[16];
mr_unsign32 counter;
mr_unsign32 lenA[2],lenC[2];
int status;
aes a;
} gcm;

               /* Elliptic curve point status */

#define MR_EPOINT_GENERAL    0
#define MR_EPOINT_NORMALIZED 1
#define MR_EPOINT_INFINITY   2

#define MR_NOTSET     0
#define MR_PROJECTIVE 0
#define MR_AFFINE     1
#define MR_BEST       2
#define MR_TWIST      8

#define MR_OVER       0
#define MR_ADD        1
#define MR_DOUBLE     2

/* Twist type */

#define MR_QUADRATIC 2
#define MR_CUBIC_M   0x3A
#define MR_CUBIC_D   0x3B
#define MR_QUARTIC_M 0x4A
#define MR_QUARTIC_D 0x4B
#define MR_SEXTIC_M  0x6A
#define MR_SEXTIC_D  0x6B


/* Fractional Sliding Windows for ECC - how much precomputation storage to use ? */
/* Note that for variable point multiplication there is an optimal value 
   which can be reduced if space is short. For fixed points its a matter of 
   how much ROM is available to store precomputed points.
   We are storing the k points (P,3P,5P,7P,...,[2k-1].P) */

/* These values can be manually tuned for optimal performance... */

#ifdef MR_SMALL_EWINDOW
#define MR_ECC_STORE_N  3   /* point store for ecn  variable point multiplication */
#define MR_ECC_STORE_2M 3   /* point store for ec2m variable point multiplication */
#define MR_ECC_STORE_N2 3   /* point store for ecn2 variable point multiplication */
#else
#define MR_ECC_STORE_N  8   /* 8/9 is close to optimal for 256 bit exponents */
#define MR_ECC_STORE_2M 9   
#define MR_ECC_STORE_N2 8   
#endif

/*#define MR_ECC_STORE_N2_PRECOMP MR_ECC_STORE_N2 */
                            /* Might want to make this bigger.. */

/* If multi-addition is of m points, and s precomputed values are required, this is max of m*s (=4.10?) */
#define MR_MAX_M_T_S 64

/* Elliptic Curve epoint structure. Uses projective (X,Y,Z) co-ordinates */

typedef struct {
int marker;
big X;
big Y;
#ifndef MR_AFFINE_ONLY
big Z;
#endif
} epoint;


/* Structure for Comb method for finite *
   field exponentiation with precomputation */

typedef struct {
#ifdef MR_STATIC
    const mr_small *table;
#else
    mr_small *table;
#endif
    big n; 
    int window;
    int max;
} brick;

/* Structure for Comb method for elliptic *
   curve exponentiation with precomputation  */

typedef struct {
#ifdef MR_STATIC
    const mr_small *table; 
#else
    mr_small *table;
#endif
    big a,b,n;
    int window;
    int max;
} ebrick;

typedef struct {
#ifdef MR_STATIC
    const mr_small *table;
#else
    mr_small *table;
#endif
    big a6,a2;
    int m,a,b,c;
    int window;
    int max;
} ebrick2;

typedef struct
{
    big a;
    big b;
} zzn2;

typedef struct
{
    zzn2 a;
    zzn2 b;
    BOOL unitary;
} zzn4;

typedef struct 
{
    int marker;
    zzn2 x;
    zzn2 y;
#ifndef MR_AFFINE_ONLY
    zzn2 z;
#endif

} ecn2;

typedef struct
{
    big a;
    big b;
    big c;
} zzn3;

typedef struct
{
	zzn2 a;
	zzn2 b;
	zzn2 c;
} zzn6_3x2;

/* main MIRACL instance structure */

/* ------------------------------------------------------------------------*/

typedef struct {
mr_small base;       /* number base     */
mr_small apbase;     /* apparent base   */
int   pack;          /* packing density */
int   lg2b;          /* bits in base    */
mr_small base2;      /* 2^mr_lg2b          */
BOOL (*user)(void);  /* pointer to user supplied function */

int   nib;           /* length of bigs  */
#ifndef MR_STRIPPED_DOWN
int   depth;                 /* error tracing ..*/
int   trace[MR_MAXDEPTH];    /* .. mechanism    */
#endif
BOOL  check;         /* overflow check  */
BOOL  fout;          /* Output to file   */
BOOL  fin;           /* Input from file  */
BOOL  active;

#ifndef MR_NO_FILE_IO

FILE  *infile;       /* Input file       */
FILE  *otfile;       /* Output file      */

#endif


#ifndef MR_NO_RAND
mr_unsign32 ira[NK];  /* random number...   */
int         rndptr;   /* ...array & pointer */
mr_unsign32 borrow;
#endif

            /* Montgomery constants */
mr_small ndash;
big modulus;
big pR;
BOOL ACTIVE;
BOOL MONTY;

                       /* Elliptic Curve details   */
#ifndef MR_NO_SS
BOOL SS;               /* True for Super-Singular  */
#endif
#ifndef MR_NOKOBLITZ
BOOL KOBLITZ;          /* True for a Koblitz curve */
#endif
#ifndef MR_AFFINE_ONLY
int coord;
#endif
int Asize,Bsize;

int M,AA,BB,CC;     /* for GF(2^m) curves */

/*
mr_small pm,mask;
int e,k,Me,m;       for GF(p^m) curves */


#ifndef MR_STATIC

int logN;           /* constants for fast fourier fft multiplication */
int nprimes,degree;
mr_utype *prime,*cr;
mr_utype *inverse,**roots;
small_chinese chin;
mr_utype const1,const2,const3;
mr_small msw,lsw;
mr_utype **s1,**s2;   /* pre-computed tables for polynomial reduction */
mr_utype **t;         /* workspace */
mr_utype *wa;
mr_utype *wb;
mr_utype *wc;

#endif

BOOL same;
BOOL first_one;
BOOL debug;

big w0;            /* workspace bigs  */
big w1,w2,w3,w4;
big w5,w6,w7;
big w8,w9,w10,w11;
big w12,w13,w14,w15;
big sru;
big one;

#ifdef MR_KCM
big big_ndash;
big ws,wt;
#endif

big A,B;

/* User modifiables */

#ifndef MR_SIMPLE_IO
int  IOBSIZ;       /* size of i/o buffer */
#endif
BOOL ERCON;        /* error control   */
int  ERNUM;        /* last error code */
int  NTRY;         /* no. of tries for probablistic primality testing   */
#ifndef MR_SIMPLE_IO
int  INPLEN;       /* input length               */
#ifndef MR_SIMPLE_BASE
int  IOBASE;       /* base for input and output */

#endif
#endif
#ifdef MR_FLASH
BOOL EXACT;        /* exact flag      */
BOOL RPOINT;       /* =ON for radix point, =OFF for fractions in output */
#endif
#ifndef MR_STRIPPED_DOWN
BOOL TRACER;       /* turns trace tracker on/off */
#endif

#ifdef MR_STATIC
const int *PRIMES;                      /* small primes array         */
#ifndef MR_SIMPLE_IO
char IOBUFF[MR_DEFAULT_BUFFER_SIZE];    /* i/o buffer    */
#endif
#else
int *PRIMES;        /* small primes array         */
#ifndef MR_SIMPLE_IO
char *IOBUFF;       /* i/o buffer    */
#endif
#endif

#ifdef MR_FLASH
int   workprec;
int   stprec;        /* start precision */

int RS,RD;
double D;

double db,n,p;
int a,b,c,d,r,q,oldn,ndig;
mr_small u,v,ku,kv;

BOOL last,carryon;
flash pi;

#endif

#ifdef MR_FP_ROUNDING
mr_large inverse_base;
#endif

#ifndef MR_STATIC
char *workspace;
#else
char workspace[MR_BIG_RESERVE(MR_SPACES)];
#endif

int TWIST; /* set to twisted curve */
int qnr;    /* a QNR -1 for p=3 mod 4, -2 for p=5 mod 8, 0 otherwise */
int cnr;    /* a cubic non-residue */
int pmod8;
int pmod9;
BOOL NO_CARRY;
} miracl;

/* ------------------------------------------------------------------------*/


#ifndef MR_GENERIC_MT

#ifdef MR_WINDOWS_MT
#define MR_OS_THREADS
#endif

#ifdef MR_UNIX_MT
#define MR_OS_THREADS
#endif

#ifdef MR_OPENMP_MT
#define MR_OS_THREADS
#endif


#ifndef MR_OS_THREADS

extern miracl *mr_mip;  /* pointer to MIRACL's only global variable */

#endif

#endif

#ifdef MR_GENERIC_MT

#ifdef MR_STATIC
#define MR_GENERIC_AND_STATIC
#endif

#define _MIPT_  miracl *,
#define _MIPTO_ miracl *
#define _MIPD_  miracl *mr_mip,
#define _MIPDO_ miracl *mr_mip
#define _MIPP_  mr_mip,
#define _MIPPO_ mr_mip

#else

#define _MIPT_    
#define _MIPTO_  void  
#define _MIPD_    
#define _MIPDO_  void  
#define _MIPP_    
#define _MIPPO_    

#endif

/* Preamble and exit code for MIRACL routines. *
 * Not used if MR_STRIPPED_DOWN is defined     */ 

#ifdef MR_STRIPPED_DOWN
#define MR_OUT
#define MR_IN(N)
#else
#define MR_OUT  mr_mip->depth--;        
#define MR_IN(N) mr_mip->depth++; if (mr_mip->depth<MR_MAXDEPTH) {mr_mip->trace[mr_mip->depth]=(N); if (mr_mip->TRACER) mr_track(_MIPPO_); }
#endif

/* Function definitions  */

/* Group 0 - Internal routines */

extern void  mr_berror(_MIPT_ int);
extern mr_small mr_shiftbits(mr_small,int);
extern mr_small mr_setbase(_MIPT_ mr_small);
extern void  mr_track(_MIPTO_ );
extern void  mr_lzero(big);
extern BOOL  mr_notint(flash);
extern int   mr_lent(flash);
extern void  mr_padd(_MIPT_ big,big,big);
extern void  mr_psub(_MIPT_ big,big,big);
extern void  mr_pmul(_MIPT_ big,mr_small,big);
#ifdef MR_FP_ROUNDING
extern mr_large mr_invert(mr_small);
extern mr_small imuldiv(mr_small,mr_small,mr_small,mr_small,mr_large,mr_small *);
extern mr_small mr_sdiv(_MIPT_ big,mr_small,mr_large,big);
#else
extern mr_small mr_sdiv(_MIPT_ big,mr_small,big);
extern void mr_and(big,big,big);
extern void mr_xor(big,big,big);
#endif
extern void  mr_shift(_MIPT_ big,int,big); 
extern miracl *mr_first_alloc(void);
extern void  *mr_alloc(_MIPT_ int,int);
extern void  mr_free(void *);  
extern void  set_user_function(_MIPT_ BOOL (*)(void));
extern void  set_io_buffer_size(_MIPT_ int);
extern int   mr_testbit(_MIPT_ big,int);
extern void  mr_addbit(_MIPT_ big,int);
extern int   recode(_MIPT_ big ,int ,int ,int );
extern int   mr_window(_MIPT_ big,int,int *,int *,int);
extern int   mr_window2(_MIPT_ big,big,int,int *,int *);
extern int   mr_naf_window(_MIPT_ big,big,int,int *,int *,int);

extern int   mr_fft_init(_MIPT_ int,big,big,BOOL);
extern void  mr_dif_fft(_MIPT_ int,int,mr_utype *);
extern void  mr_dit_fft(_MIPT_ int,int,mr_utype *);
extern void  fft_reset(_MIPTO_);

extern int   mr_poly_mul(_MIPT_ int,big*,int,big*,big*);
extern int   mr_poly_sqr(_MIPT_ int,big*,big*);
extern void  mr_polymod_set(_MIPT_ int,big*,big*);
extern int   mr_poly_rem(_MIPT_ int,big *,big *);

extern int   mr_ps_big_mul(_MIPT_ int,big *,big *,big *);
extern int   mr_ps_zzn_mul(_MIPT_ int,big *,big *,big *);

extern mr_small muldiv(mr_small,mr_small,mr_small,mr_small,mr_small *);
extern mr_small muldvm(mr_small,mr_small,mr_small,mr_small *); 
extern mr_small muldvd(mr_small,mr_small,mr_small,mr_small *); 
extern void     muldvd2(mr_small,mr_small,mr_small *,mr_small *); 

extern flash mirvar_mem_variable(char *,int,int);
extern epoint* epoint_init_mem_variable(_MIPT_ char *,int,int);

/* Group 1 - General purpose, I/O and basic arithmetic routines  */

extern unsigned int   igcd(unsigned int,unsigned int); 
extern unsigned long  lgcd(unsigned long,unsigned long); 
extern mr_small sgcd(mr_small,mr_small);
extern unsigned int   isqrt(unsigned int,unsigned int);
extern unsigned long  mr_lsqrt(unsigned long,unsigned long);
extern void  irand(_MIPT_ mr_unsign32);
extern mr_small brand(_MIPTO_ );       
extern void  zero(flash);
extern void  convert(_MIPT_ int,big);
extern void  uconvert(_MIPT_ unsigned int,big);
extern void  lgconv(_MIPT_ long,big);
extern void  ulgconv(_MIPT_ unsigned long,big);
extern void  tconvert(_MIPT_ mr_utype,big);

#ifdef mr_dltype
extern void  dlconv(_MIPT_ mr_dltype,big);
#endif

extern flash mirvar(_MIPT_ int);
extern flash mirvar_mem(_MIPT_ char *,int);
extern void  mirkill(big);
extern void  *memalloc(_MIPT_ int);
extern void  memkill(_MIPT_ char *,int);
extern void  mr_init_threading(void);
extern void  mr_end_threading(void);
extern miracl *get_mip(void );
extern void  set_mip(miracl *);
#ifdef MR_GENERIC_AND_STATIC
extern miracl *mirsys(miracl *,int,mr_small);
#else
extern miracl *mirsys(int,mr_small);
#endif
extern miracl *mirsys_basic(miracl *,int,mr_small);
extern void  mirexit(_MIPTO_ );
extern int   exsign(flash);
extern void  insign(int,flash);
extern int   getdig(_MIPT_ big,int);  
extern int   numdig(_MIPT_ big);        
extern void  putdig(_MIPT_ int,big,int);
extern void  copy(flash,flash);  
extern void  negify(flash,flash);
extern void  absol(flash,flash); 
extern int   size(big);
extern int   mr_compare(big,big);
extern void  add(_MIPT_ big,big,big);
extern void  subtract(_MIPT_ big,big,big);
extern void  incr(_MIPT_ big,int,big);    
extern void  decr(_MIPT_ big,int,big);    
extern void  premult(_MIPT_ big,int,big); 
extern int   subdiv(_MIPT_ big,int,big);  
extern BOOL  subdivisible(_MIPT_ big,int);
extern int   remain(_MIPT_ big,int);   
extern void  bytes_to_big(_MIPT_ int,const char *,big);
extern int   big_to_bytes(_MIPT_ int,big,char *,BOOL);
extern mr_small normalise(_MIPT_ big,big);
extern void  multiply(_MIPT_ big,big,big);
extern void  fft_mult(_MIPT_ big,big,big);
extern BOOL  fastmultop(_MIPT_ int,big,big,big);
extern void  divide(_MIPT_ big,big,big);  
extern BOOL  divisible(_MIPT_ big,big);   
extern void  mad(_MIPT_ big,big,big,big,big,big);
extern int   instr(_MIPT_ flash,char *);
extern int   otstr(_MIPT_ flash,char *);
extern int   cinstr(_MIPT_ flash,char *);
extern int   cotstr(_MIPT_ flash,char *);
extern epoint* epoint_init(_MIPTO_ );
extern epoint* epoint_init_mem(_MIPT_ char *,int);
extern void* ecp_memalloc(_MIPT_ int);
void ecp_memkill(_MIPT_ char *,int);
BOOL init_big_from_rom(big,int,const mr_small *,int ,int *);
BOOL init_point_from_rom(epoint *,int,const mr_small *,int,int *);

#ifndef MR_NO_FILE_IO

extern int   innum(_MIPT_ flash,FILE *);          
extern int   otnum(_MIPT_ flash,FILE *);
extern int   cinnum(_MIPT_ flash,FILE *);
extern int   cotnum(_MIPT_ flash,FILE *);

#endif

/* Group 2 - Advanced arithmetic routines */

extern mr_small smul(mr_small,mr_small,mr_small);
extern mr_small spmd(mr_small,mr_small,mr_small); 
extern mr_small invers(mr_small,mr_small);
extern mr_small sqrmp(mr_small,mr_small);
extern int      jac(mr_small,mr_small);

extern void  gprime(_MIPT_ int);
extern int   jack(_MIPT_ big,big);
extern int   egcd(_MIPT_ big,big,big);
extern int   xgcd(_MIPT_ big,big,big,big,big);
extern int   invmodp(_MIPT_ big,big,big);
extern int   logb2(_MIPT_ big);
extern int   hamming(_MIPT_ big);
extern void  expb2(_MIPT_ int,big);
extern void  bigbits(_MIPT_ int,big);
extern void  expint(_MIPT_ int,int,big);
extern void  sftbit(_MIPT_ big,int,big);
extern void  power(_MIPT_ big,long,big,big);
extern void  powmod(_MIPT_ big,big,big,big);
extern void  powmod2(_MIPT_ big,big,big,big,big,big);
extern void  powmodn(_MIPT_ int,big *,big *,big,big);
extern int   powltr(_MIPT_ int,big,big,big);
extern BOOL  double_inverse(_MIPT_ big,big,big,big,big);
extern BOOL  multi_inverse(_MIPT_ int,big*,big,big*);
extern void  lucas(_MIPT_ big,big,big,big,big);
extern BOOL  nroot(_MIPT_ big,int,big);
extern BOOL  sqroot(_MIPT_ big,big,big);
extern void  bigrand(_MIPT_ big,big);
extern void  bigdig(_MIPT_ int,int,big);
extern int   trial_division(_MIPT_ big,big);
extern BOOL  isprime(_MIPT_ big);
extern BOOL  nxprime(_MIPT_ big,big);
extern BOOL  nxsafeprime(_MIPT_ int,int,big,big);
extern BOOL  crt_init(_MIPT_ big_chinese *,int,big *);
extern void  crt(_MIPT_ big_chinese *,big *,big);
extern void  crt_end(big_chinese *);
extern BOOL  scrt_init(_MIPT_ small_chinese *,int,mr_utype *);    
extern void  scrt(_MIPT_ small_chinese*,mr_utype *,big); 
extern void  scrt_end(small_chinese *);
#ifndef MR_STATIC
extern BOOL  brick_init(_MIPT_ brick *,big,big,int,int);
extern void  brick_end(brick *);
#else
extern void  brick_init(brick *,const mr_small *,big,int,int);
#endif
extern void  pow_brick(_MIPT_ brick *,big,big);
#ifndef MR_STATIC
extern BOOL  ebrick_init(_MIPT_ ebrick *,big,big,big,big,big,int,int);
extern void  ebrick_end(ebrick *);
#else
extern void  ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
#endif
extern int   mul_brick(_MIPT_ ebrick*,big,big,big);
#ifndef MR_STATIC
extern BOOL  ebrick2_init(_MIPT_ ebrick2 *,big,big,big,big,int,int,int,int,int,int);
extern void  ebrick2_end(ebrick2 *);
#else
extern void  ebrick2_init(ebrick2 *,const mr_small *,big,big,int,int,int,int,int,int);
#endif
extern int   mul2_brick(_MIPT_ ebrick2*,big,big,big);

/* Montgomery stuff */

extern mr_small prepare_monty(_MIPT_ big);
extern void  kill_monty(_MIPTO_ );
extern void  nres(_MIPT_ big,big);        
extern void  redc(_MIPT_ big,big);        

extern void  nres_negate(_MIPT_ big,big);
extern void  nres_modadd(_MIPT_ big,big,big);  
extern void  nres_modsub(_MIPT_ big,big,big); 
extern void  nres_lazy(_MIPT_ big,big,big,big,big,big);
extern void  nres_complex(_MIPT_ big,big,big,big);
extern void  nres_double_modadd(_MIPT_ big,big,big);    
extern void  nres_double_modsub(_MIPT_ big,big,big); 
extern void  nres_premult(_MIPT_ big,int,big);
extern void  nres_modmult(_MIPT_ big,big,big);    
extern int   nres_moddiv(_MIPT_ big,big,big);     
extern void  nres_dotprod(_MIPT_ int,big *,big *,big);
extern void  nres_powmod(_MIPT_ big,big,big);     
extern void  nres_powltr(_MIPT_ int,big,big);     
extern void  nres_powmod2(_MIPT_ big,big,big,big,big);     
extern void  nres_powmodn(_MIPT_ int,big *,big *,big);
extern BOOL  nres_sqroot(_MIPT_ big,big);
extern void  nres_lucas(_MIPT_ big,big,big,big);
extern BOOL  nres_double_inverse(_MIPT_ big,big,big,big);
extern BOOL  nres_multi_inverse(_MIPT_ int,big *,big *);
extern void  nres_div2(_MIPT_ big,big);
extern void  nres_div3(_MIPT_ big,big);
extern void  nres_div5(_MIPT_ big,big);

extern void  shs_init(sha *);
extern void  shs_process(sha *,int);
extern void  shs_hash(sha *,char *);

extern void  shs256_init(sha256 *);
extern void  shs256_process(sha256 *,int);
extern void  shs256_hash(sha256 *,char *);

#ifdef mr_unsign64

extern void  shs512_init(sha512 *);
extern void  shs512_process(sha512 *,int);
extern void  shs512_hash(sha512 *,char *);

extern void  shs384_init(sha384 *);
extern void  shs384_process(sha384 *,int);
extern void  shs384_hash(sha384 *,char *);

extern void  sha3_init(sha3 *,int);
extern void  sha3_process(sha3 *,int);
extern void  sha3_hash(sha3 *,char *);

#endif

extern BOOL  aes_init(aes *,int,int,char *,char *);
extern void  aes_getreg(aes *,char *);
extern void  aes_ecb_encrypt(aes *,MR_BYTE *);
extern void  aes_ecb_decrypt(aes *,MR_BYTE *);
extern mr_unsign32 aes_encrypt(aes *,char *);
extern mr_unsign32 aes_decrypt(aes *,char *);
extern void  aes_reset(aes *,int,char *);
extern void  aes_end(aes *);

extern void  gcm_init(gcm *,int,char *,int,char *);
extern BOOL  gcm_add_header(gcm *,char *,int);
extern BOOL  gcm_add_cipher(gcm *,int,char *,int,char *);
extern void  gcm_finish(gcm *,char *);

extern void FPE_encrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
extern void FPE_decrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);

extern void  strong_init(csprng *,int,char *,mr_unsign32);   
extern int   strong_rng(csprng *);
extern void  strong_bigrand(_MIPT_ csprng *,big,big);
extern void  strong_bigdig(_MIPT_ csprng *,int,int,big);
extern void  strong_kill(csprng *);

/* special modular multipliers */

extern void  comba_mult(big,big,big);
extern void  comba_square(big,big);
extern void  comba_redc(_MIPT_ big,big);
extern void  comba_modadd(_MIPT_ big,big,big);
extern void  comba_modsub(_MIPT_ big,big,big);
extern void  comba_double_modadd(_MIPT_ big,big,big);
extern void  comba_double_modsub(_MIPT_ big,big,big);
extern void  comba_negate(_MIPT_ big,big);
extern void  comba_add(big,big,big);
extern void  comba_sub(big,big,big);
extern void  comba_double_add(big,big,big);
extern void  comba_double_sub(big,big,big);

extern void  comba_mult2(_MIPT_ big,big,big);

extern void  fastmodmult(_MIPT_ big,big,big);
extern void  fastmodsquare(_MIPT_ big,big);   

extern void  kcm_mul(_MIPT_ big,big,big);
extern void  kcm_sqr(_MIPT_ big,big); 
extern void  kcm_redc(_MIPT_ big,big); 

extern void  kcm_multiply(_MIPT_ int,big,big,big);
extern void  kcm_square(_MIPT_ int,big,big);
extern BOOL  kcm_top(_MIPT_ int,big,big,big);

/* elliptic curve stuff */

extern BOOL point_at_infinity(epoint *);

extern void mr_jsf(_MIPT_ big,big,big,big,big,big);

extern void ecurve_init(_MIPT_ big,big,big,int);
extern int  ecurve_add(_MIPT_ epoint *,epoint *);
extern int  ecurve_sub(_MIPT_ epoint *,epoint *);
extern void ecurve_double_add(_MIPT_ epoint *,epoint *,epoint *,epoint *,big *,big *);
extern void ecurve_multi_add(_MIPT_ int,epoint **,epoint **);
extern void ecurve_double(_MIPT_ epoint*);
extern int  ecurve_mult(_MIPT_ big,epoint *,epoint *);
extern void ecurve_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
extern void ecurve_multn(_MIPT_ int,big *,epoint**,epoint *);

extern BOOL epoint_x(_MIPT_ big);
extern BOOL epoint_set(_MIPT_ big,big,int,epoint*);
extern int  epoint_get(_MIPT_ epoint*,big,big);
extern void epoint_getxyz(_MIPT_ epoint *,big,big,big);
extern BOOL epoint_norm(_MIPT_ epoint *);
extern BOOL epoint_multi_norm(_MIPT_ int,big *,epoint **);  
extern void epoint_free(epoint *);
extern void epoint_copy(epoint *,epoint *);
extern BOOL epoint_comp(_MIPT_ epoint *,epoint *);
extern void epoint_negate(_MIPT_ epoint *);

extern BOOL ecurve2_init(_MIPT_ int,int,int,int,big,big,BOOL,int);
extern big  ecurve2_add(_MIPT_ epoint *,epoint *);
extern big  ecurve2_sub(_MIPT_ epoint *,epoint *);
extern void ecurve2_multi_add(_MIPT_ int,epoint **,epoint **);
extern void ecurve2_mult(_MIPT_ big,epoint *,epoint *);
extern void ecurve2_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
extern void ecurve2_multn(_MIPT_ int,big *,epoint**,epoint *);

extern epoint* epoint2_init(_MIPTO_ );
extern BOOL epoint2_set(_MIPT_ big,big,int,epoint*);
extern int  epoint2_get(_MIPT_ epoint*,big,big);
extern void epoint2_getxyz(_MIPT_ epoint *,big,big,big);
extern int  epoint2_norm(_MIPT_ epoint *);
extern void epoint2_free(epoint *);
extern void epoint2_copy(epoint *,epoint *);
extern BOOL epoint2_comp(_MIPT_ epoint *,epoint *);
extern void epoint2_negate(_MIPT_ epoint *);

/* GF(2) stuff */

extern BOOL prepare_basis(_MIPT_ int,int,int,int,BOOL);
extern int parity2(big);
extern BOOL multi_inverse2(_MIPT_ int,big *,big *);
extern void add2(big,big,big);
extern void incr2(big,int,big);
extern void reduce2(_MIPT_ big,big);
extern void multiply2(_MIPT_ big,big,big);
extern void modmult2(_MIPT_ big,big,big);
extern void modsquare2(_MIPT_ big,big);
extern void power2(_MIPT_ big,int,big);
extern void sqroot2(_MIPT_ big,big);
extern void halftrace2(_MIPT_ big,big);
extern BOOL quad2(_MIPT_ big,big);
extern BOOL inverse2(_MIPT_ big,big);
extern void karmul2(int,mr_small *,mr_small *,mr_small *,mr_small *);
extern void karmul2_poly(_MIPT_ int,big *,big *,big *,big *);
extern void karmul2_poly_upper(_MIPT_ int,big *,big *,big *,big *);
extern void gf2m_dotprod(_MIPT_ int,big *,big *,big);
extern int  trace2(_MIPT_ big);
extern void rand2(_MIPT_ big);
extern void gcd2(_MIPT_ big,big,big);
extern int degree2(big);

/* zzn2 stuff */

extern BOOL zzn2_iszero(zzn2 *);
extern BOOL zzn2_isunity(_MIPT_ zzn2 *);
extern void zzn2_from_int(_MIPT_ int,zzn2 *);
extern void zzn2_from_ints(_MIPT_ int,int,zzn2 *);
extern void zzn2_copy(zzn2 *,zzn2 *);
extern void zzn2_zero(zzn2 *);
extern void zzn2_negate(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_conj(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_add(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_sub(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_smul(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_mul(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_sqr(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_inv(_MIPT_ zzn2 *);
extern void zzn2_timesi(_MIPT_ zzn2 *);
extern void zzn2_powl(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_from_zzns(big,big,zzn2 *);
extern void zzn2_from_bigs(_MIPT_ big,big,zzn2 *);
extern void zzn2_from_zzn(big,zzn2 *);
extern void zzn2_from_big(_MIPT_ big, zzn2 *);
extern void zzn2_sadd(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_ssub(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_div2(_MIPT_ zzn2 *);
extern void zzn2_div3(_MIPT_ zzn2 *);
extern void zzn2_div5(_MIPT_ zzn2 *);
extern void zzn2_imul(_MIPT_ zzn2 *,int,zzn2 *);
extern BOOL zzn2_compare(zzn2 *,zzn2 *);
extern void zzn2_txx(_MIPT_ zzn2 *);
extern void zzn2_txd(_MIPT_ zzn2 *);
extern BOOL zzn2_sqrt(_MIPT_ zzn2 *,zzn2 *);
extern BOOL zzn2_qr(_MIPT_ zzn2 *);
extern BOOL zzn2_multi_inverse(_MIPT_ int,zzn2 *,zzn2 *);


/* zzn3 stuff */

extern void zzn3_set(_MIPT_ int,big);
extern BOOL zzn3_iszero(zzn3 *);
extern BOOL zzn3_isunity(_MIPT_ zzn3 *);
extern void zzn3_from_int(_MIPT_ int,zzn3 *);
extern void zzn3_from_ints(_MIPT_ int,int,int,zzn3 *);
extern void zzn3_copy(zzn3 *,zzn3 *);
extern void zzn3_zero(zzn3 *);
extern void zzn3_negate(_MIPT_ zzn3 *,zzn3 *);
extern void zzn3_powq(_MIPT_ zzn3 *,zzn3 *);
extern void zzn3_add(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_sub(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_smul(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_mul(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_inv(_MIPT_ zzn3 *);
extern void zzn3_timesi(_MIPT_ zzn3 *);
extern void zzn3_timesi2(_MIPT_ zzn3 *);
extern void zzn3_powl(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_from_zzns(big,big,big,zzn3 *);
extern void zzn3_from_bigs(_MIPT_ big,big,big,zzn3 *);
extern void zzn3_from_zzn(big,zzn3 *);
extern void zzn3_from_zzn_1(big,zzn3 *);
extern void zzn3_from_zzn_2(big,zzn3 *);
extern void zzn3_from_big(_MIPT_ big, zzn3 *);
extern void zzn3_sadd(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_ssub(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_div2(_MIPT_ zzn3 *);
extern void zzn3_imul(_MIPT_ zzn3 *,int,zzn3 *);
extern BOOL zzn3_compare(zzn3 *,zzn3 *);

/* zzn4 stuff */

extern BOOL zzn4_iszero(zzn4 *);
extern BOOL zzn4_isunity(_MIPT_ zzn4 *);
extern void zzn4_from_int(_MIPT_ int,zzn4 *);
extern void zzn4_copy(zzn4 *,zzn4 *);
extern void zzn4_zero(zzn4 *);
extern void zzn4_negate(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_powq(_MIPT_ zzn2 *,zzn4 *);
extern void zzn4_add(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_sub(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_smul(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_sqr(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_mul(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_inv(_MIPT_ zzn4 *);
extern void zzn4_timesi(_MIPT_ zzn4 *);
extern void zzn4_tx(_MIPT_ zzn4 *);
extern void zzn4_from_zzn2s(zzn2 *,zzn2 *,zzn4 *);
extern void zzn4_from_zzn2(zzn2 *,zzn4 *);
extern void zzn4_from_zzn2h(zzn2 *,zzn4 *);
extern void zzn4_from_zzn(big,zzn4 *);
extern void zzn4_from_big(_MIPT_ big , zzn4 *);
extern void zzn4_sadd(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_ssub(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_div2(_MIPT_ zzn4 *);
extern void zzn4_conj(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_imul(_MIPT_ zzn4 *,int,zzn4 *);
extern void zzn4_lmul(_MIPT_ zzn4 *,big,zzn4 *);
extern BOOL zzn4_compare(zzn4 *,zzn4 *);

/* ecn2 stuff */

extern BOOL ecn2_iszero(ecn2 *);
extern void ecn2_copy(ecn2 *,ecn2 *);
extern void ecn2_zero(ecn2 *);
extern BOOL ecn2_compare(_MIPT_ ecn2 *,ecn2 *);
extern void ecn2_norm(_MIPT_ ecn2 *);
extern void ecn2_get(_MIPT_ ecn2 *,zzn2 *,zzn2 *,zzn2 *);
extern void ecn2_getxy(ecn2 *,zzn2 *,zzn2 *);
extern void ecn2_getx(ecn2 *,zzn2 *);
extern void ecn2_getz(_MIPT_ ecn2 *,zzn2 *);
extern void ecn2_rhs(_MIPT_ zzn2 *,zzn2 *);
extern BOOL ecn2_set(_MIPT_ zzn2 *,zzn2 *,ecn2 *);
extern BOOL ecn2_setx(_MIPT_ zzn2 *,ecn2 *);
extern void ecn2_setxyz(_MIPT_ zzn2 *,zzn2 *,zzn2 *,ecn2 *);
extern void ecn2_negate(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_add3(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *,zzn2 *);
extern BOOL ecn2_add2(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *);
extern BOOL ecn2_add1(_MIPT_ ecn2 *,ecn2 *,zzn2 *);
extern BOOL ecn2_add(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_sub(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_add_sub(_MIPT_ ecn2 *,ecn2 *,ecn2 *,ecn2 *);
extern int ecn2_mul2_jsf(_MIPT_ big,ecn2 *,big,ecn2 *,ecn2 *);
extern int ecn2_mul(_MIPT_ big,ecn2 *);
extern void ecn2_psi(_MIPT_ zzn2 *,ecn2 *);
extern BOOL ecn2_multi_norm(_MIPT_ int ,zzn2 *,ecn2 *);
extern int ecn2_mul4_gls_v(_MIPT_ big *,int,ecn2 *,big *,ecn2 *,zzn2 *,ecn2 *);
extern int ecn2_muln_engine(_MIPT_ int,int,int,int,big *,big *,big *,big *,ecn2 *,ecn2 *,ecn2 *);
extern void ecn2_precomp_gls(_MIPT_ int,BOOL,ecn2 *,zzn2 *,ecn2 *);
extern int ecn2_mul2_gls(_MIPT_ big *,ecn2 *,zzn2 *,ecn2 *);
extern void ecn2_precomp(_MIPT_ int,BOOL,ecn2 *,ecn2 *);
extern int ecn2_mul2(_MIPT_ big,int,ecn2 *,big,ecn2 *,ecn2 *);
#ifndef MR_STATIC
extern BOOL ecn2_brick_init(_MIPT_ ebrick *,zzn2 *,zzn2 *,big,big,big,int,int);
extern void ecn2_brick_end(ebrick *);
#else
extern void ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
#endif
extern void ecn2_mul_brick_gls(_MIPT_ ebrick *B,big *,zzn2 *,zzn2 *,zzn2 *);
extern void ecn2_multn(_MIPT_ int,big *,ecn2 *,ecn2 *);
extern void ecn2_mult4(_MIPT_ big *,ecn2 *,ecn2 *);
/* Group 3 - Floating-slash routines      */

#ifdef MR_FLASH
extern void  fpack(_MIPT_ big,big,flash);
extern void  numer(_MIPT_ flash,big);    
extern void  denom(_MIPT_ flash,big);    
extern BOOL  fit(big,big,int);    
extern void  build(_MIPT_ flash,int (*)(_MIPT_ big,int));
extern void  mround(_MIPT_ big,big,flash);         
extern void  flop(_MIPT_ flash,flash,int *,flash);
extern void  fmul(_MIPT_ flash,flash,flash);      
extern void  fdiv(_MIPT_ flash,flash,flash);      
extern void  fadd(_MIPT_ flash,flash,flash);      
extern void  fsub(_MIPT_ flash,flash,flash);      
extern int   fcomp(_MIPT_ flash,flash);           
extern void  fconv(_MIPT_ int,int,flash);         
extern void  frecip(_MIPT_ flash,flash);          
extern void  ftrunc(_MIPT_ flash,big,flash);      
extern void  fmodulo(_MIPT_ flash,flash,flash);
extern void  fpmul(_MIPT_ flash,int,int,flash);   
extern void  fincr(_MIPT_ flash,int,int,flash);   
extern void  dconv(_MIPT_ double,flash);          
extern double fdsize(_MIPT_ flash);
extern void  frand(_MIPT_ flash);

/* Group 4 - Advanced Flash routines */ 

extern void  fpower(_MIPT_ flash,int,flash);
extern BOOL  froot(_MIPT_ flash,int,flash); 
extern void  fpi(_MIPT_ flash);             
extern void  fexp(_MIPT_ flash,flash);      
extern void  flog(_MIPT_ flash,flash);      
extern void  fpowf(_MIPT_ flash,flash,flash);
extern void  ftan(_MIPT_ flash,flash); 
extern void  fatan(_MIPT_ flash,flash);
extern void  fsin(_MIPT_ flash,flash); 
extern void  fasin(_MIPT_ flash,flash);
extern void  fcos(_MIPT_ flash,flash);  
extern void  facos(_MIPT_ flash,flash); 
extern void  ftanh(_MIPT_ flash,flash); 
extern void  fatanh(_MIPT_ flash,flash);
extern void  fsinh(_MIPT_ flash,flash); 
extern void  fasinh(_MIPT_ flash,flash);
extern void  fcosh(_MIPT_ flash,flash); 
extern void  facosh(_MIPT_ flash,flash);
#endif


/* Test predefined Macros to determine compiler type, and hopefully 
   selectively use fast in-line assembler (or other compiler specific
   optimisations. Note I am unsure of Microsoft version numbers. So I 
   suspect are Microsoft.

   Note: It seems to be impossible to get the 16-bit Microsoft compiler
   to allow inline 32-bit op-codes. So I suspect that INLINE_ASM == 2 will
   never work with it. Pity. 

#define INLINE_ASM 1    -> generates 8086 inline assembly
#define INLINE_ASM 2    -> generates mixed 8086 & 80386 inline assembly,
                           so you can get some benefit while running in a 
                           16-bit environment on 32-bit hardware (DOS, Windows
                           3.1...)
#define INLINE_ASM 3    -> generate true 80386 inline assembly - (Using DOS 
                           extender, Windows '95/Windows NT)
                           Actually optimised for Pentium

#define INLINE_ASM 4    -> 80386 code in the GNU style (for (DJGPP)

Small, medium, compact and large memory models are supported for the
first two of the above.
                        
*/

/* To allow for inline assembly */

#ifdef __GNUC__ 
    #define ASM __asm__ __volatile__
#endif

#ifdef __TURBOC__ 
    #define ASM asm
#endif

#ifdef _MSC_VER
    #define ASM _asm
#endif

#ifndef MR_NOASM

/* Win64 - inline the time critical function */
#ifndef MR_NO_INTRINSICS
	#ifdef MR_WIN64
		#define muldvd(a,b,c,rp) (*(rp)=_umul128((a),(b),&(tm)),*(rp)+=(c),tm+=(*(rp)<(c)),tm)
		#define muldvd2(a,b,c,rp) (tr=_umul128((a),(b),&(tm)),tr+=(*(c)),tm+=(tr<(*(c))),tr+=(*(rp)),tm+=(tr<(*(rp))),*(rp)=tr,*(c)=tm)
	#endif

/* Itanium - inline the time-critical functions */

    #ifdef MR_ITANIUM
        #define muldvd(a,b,c,rp)  (tm=_m64_xmahu((a),(b),(c)),*(rp)=_m64_xmalu((a),(b),(c)),tm)
        #define muldvd2(a,b,c,rp) (tm=_m64_xmalu((a),(b),(*(c))),*(c)=_m64_xmahu((a),(b),(*(c))),tm+=*(rp),*(c)+=(tm<*(rp)),*(rp)=tm)
    #endif
#endif
/*

SSE2 code. Works as for itanium - but in fact it is slower than the regular code so not recommended
Would require a call to emmintrin.h or xmmintrin.h, and an __m128i variable tm to be declared in effected 
functions. But it works!

	#define muldvd(a,b,c,rp)  (tm=_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128((c))),*(rp)=_mm_cvtsi128_si32(tm),_mm_cvtsi128_si32(_mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))) )
	#define muldvd2(a,b,c,rp) (tm=_mm_add_epi64(_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128(*(c))),_mm_cvtsi32_si128(*(rp))),*(rp)=_mm_cvtsi128_si32(tm),*(c)=_mm_cvtsi128_si32( _mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))  )
*/

/* Borland C/Turbo C */

    #ifdef __TURBOC__ 
    #ifndef __HUGE__
        #if defined(__COMPACT__) || defined(__LARGE__)
            #define MR_LMM
        #endif

        #if MIRACL==16
            #define INLINE_ASM 1
        #endif

        #if __TURBOC__>=0x410
            #if MIRACL==32
#if defined(__SMALL__) || defined(__MEDIUM__) || defined(__LARGE__) || defined(__COMPACT__)
                    #define INLINE_ASM 2
                #else
                    #define INLINE_ASM 3
                #endif
            #endif
        #endif
    #endif
    #endif

/* Microsoft C */

    #ifdef _MSC_VER
    #ifndef M_I86HM        
        #if defined(M_I86CM) || defined(M_I86LM)
            #define MR_LMM
        #endif
        #if _MSC_VER>=600
            #if _MSC_VER<1200
                #if MIRACL==16
                    #define INLINE_ASM 1
                #endif
            #endif
        #endif
        #if _MSC_VER>=1000
			#if _MSC_VER<1500
				#if MIRACL==32
					#define INLINE_ASM 3
				#endif
			#endif
        #endif     
    #endif       
    #endif

/* DJGPP GNU C */

    #ifdef __GNUC__
    #ifdef i386
        #if MIRACL==32
            #define INLINE_ASM 4
        #endif
    #endif
    #endif

#endif



/* 
   The following contribution is from Tielo Jongmans, Netherlands
   These inline assembler routines are suitable for Watcom 10.0 and up 

   Added into miracl.h.  Notice the override of the original declarations 
   of these routines, which should be removed.

   The following pragma is optional, it is dangerous, but it saves a 
   calling sequence
*/

/*

#pragma off (check_stack);

extern unsigned int muldiv(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldiv=                 \
       "mul     edx"                \
       "add     eax,ebx"            \
       "adc     edx,0"              \
       "div     ecx"                \
       "mov     [esi],edx"          \
    parm [eax] [edx] [ebx] [ecx] [esi]   \
    value [eax]                     \
    modify [eax edx];

extern unsigned int muldvm(unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldvm=                 \
        "div     ebx"               \
        "mov     [ecx],edx"         \
    parm [edx] [eax] [ebx] [ecx]    \
    value [eax]                     \
    modify [eax edx];

extern unsigned int muldvd(unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldvd=                 \
        "mul     edx"               \
        "add     eax,ebx"           \
        "adc     edx,0"             \
        "mov     [ecx],eax"         \
        "mov     eax,edx"           \
    parm [eax] [edx] [ebx] [ecx]    \
    value [eax]                     \
    modify [eax edx];

*/


#endif
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat mirdef.h
/* 
 *   MIRACL compiler/hardware definitions - mirdef.h
 *   This version suitable for use with most 32-bit computers
 *   e.g. 80386+ PC, VAX, ARM etc. Assembly language versions of muldiv,
 *   muldvm, muldvd and muldvd2 will be necessary. See mrmuldv.any 
 *
 *   Also suitable for DJGPP GNU C Compiler
 *   ... but change __int64 to long long
 */

#define MIRACL 32
#define MR_LITTLE_ENDIAN    /* This may need to be changed        */
#define mr_utype int
                            /* the underlying type is usually int *
                             * but see mrmuldv.any                */
#define mr_unsign32 unsigned int
                            /* 32 bit unsigned type               */
#define MR_IBITS      32    /* bits in int  */
#define MR_LBITS      32    /* bits in long */
#define MR_FLASH      52      
                            /* delete this definition if integer  *
                             * only version of MIRACL required    */
                            /* Number of bits per double mantissa */

#define mr_dltype __int64   /* ... or long long for Unix/Linux */
#define mr_unsign64 unsigned __int64

#define MAXBASE ((mr_small)1<<(MIRACL-1))
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat SM2_ENC.c

#include "miracl.h"
#include "mirdef.h"
#include "SM2_ENC.h"
#include "kdf.h"

#pragma comment(lib,"mymiracl.lib")


unsigned char SM2_p[32] = { 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF };
unsigned char SM2_a[32] = { 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFC };
unsigned char SM2_b[32] = { 0x28,0xE9,0xFA,0x9E,0x9D,0x9F,0x5E,0x34,0x4D,0x5A,0x9E,0x4B,0xCF,0x65,0x09,0xA7,
0xF3,0x97,0x89,0xF5,0x15,0xAB,0x8F,0x92,0xDD,0xBC,0xBD,0x41,0x4D,0x94,0x0E,0x93 };
unsigned char SM2_n[32] = { 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0x72,0x03,0xDF,0x6B,0x21,0xC6,0x05,0x2B,0x53,0xBB,0xF4,0x09,0x39,0xD5,0x41,0x23 };
unsigned char SM2_Gx[32] = { 0x32,0xC4,0xAE,0x2C,0x1F,0x19,0x81,0x19,0x5F,0x99,0x04,0x46,0x6A,0x39,0xC9,0x94,
0x8F,0xE3,0x0B,0xBF,0xF2,0x66,0x0B,0xE1,0x71,0x5A,0x45,0x89,0x33,0x4C,0x74,0xC7 };
unsigned char SM2_Gy[32] = { 0xBC,0x37,0x36,0xA2,0xF4,0xF6,0x77,0x9C,0x59,0xBD,0xCE,0xE3,0x6B,0x69,0x21,0x53,
0xD0,0xA9,0x87,0x7C,0xC6,0x2A,0x47,0x40,0x02,0xDF,0x32,0xE5,0x21,0x39,0xF0,0xA0 };
unsigned char SM2_h[32] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 };


/****************************************************************
Function: Test_Point
Description: test if the given point is on SM2 curve
Calls:
Called By: SM2_Decrypt, Test_PubKey
Input: point
Output: null
Return: 0: sucess
3: not a valid point on curve
Others:
****************************************************************/
int Test_Point(epoint* point)
{
	big x, y, x_3, tmp;
	x = mirvar(0);
	y = mirvar(0);
	x_3 = mirvar(0);
	tmp = mirvar(0);
	//test if y^2=x^3+ax+b
	epoint_get(point, x, y);
	power(x, 3, para_p, x_3); //x_3=x^3 mod p
	multiply(x, para_a, x); //x=a*x
	divide(x, para_p, tmp); //x=a*x mod p , tmp=a*x/p
	add(x_3, x, x); //x=x^3+ax
	add(x, para_b, x); //x=x^3+ax+b
	divide(x, para_p, tmp); //x=x^3+ax+b mod p
	power(y, 2, para_p, y); //y=y^2 mod p
	if (mr_compare(x, y) != 0)
		return ERR_NOT_VALID_POINT;
	else
		return 0;
}
/****************************************************************
Function: SM2_TestPubKey
Description: test if the given point is valid
Calls:
Called By: SM2_Decrypt
Input: pubKey //a point
Output: null
Return: 0: sucess
1: a point at infinity
2: X or Y coordinate is beyond Fq
3: not a valid point on curve
4: not a point of order n
Others:
****************************************************************/
int Test_PubKey(epoint *pubKey)
{
	big x, y, x_3, tmp;
	epoint *nP;
	x = mirvar(0);
	y = mirvar(0);
	x_3 = mirvar(0);
	tmp = mirvar(0);
	nP = epoint_init();
	//test if the pubKey is the point at infinity
	if (point_at_infinity(pubKey))// if pubKey is point at infinity, return error;
		return ERR_INFINITY_POINT;
	//test if x<p and y<p both hold
	epoint_get(pubKey, x, y);
	if ((mr_compare(x, para_p) != -1) || (mr_compare(y, para_p) != -1))
		return ERR_NOT_VALID_ELEMENT;
	if (Test_Point(pubKey) != 0)
		return ERR_NOT_VALID_POINT;
	//test if the order of pubKey is equal to n
	ecurve_mult(para_n, pubKey, nP); // nP=[n]P
	if (!point_at_infinity(nP)) // if np is point NOT at infinity, return error;
		return ERR_ORDER;
	return 0;
}
/****************************************************************
Function: Test_Null
Description: test if the given array is all zero
Calls:
Called By: SM2_Encrypt
Input: array[len]
len //byte len of the array
Output: null
Return: 0: the given array is not all zero
1: the given array is all zero
Others:
****************************************************************/
int Test_Null(unsigned char array[], int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
	{
		if (array[i] != 0x00)
			return 0;
	}
	return 1;
}
/****************************************************************
Function: SM2_Init
Description: Initiate SM2 curve
Calls: MIRACL functions
Called By:
Input: null
Output: null
Return: 0: sucess;
7: paremeter error;
4: the given point G is not a point of order n
Others:
****************************************************************/
int SM2_Init()
{
	epoint *nG;
	para_p = mirvar(0);
	para_a = mirvar(0);
	para_b = mirvar(0);
	para_n = mirvar(0);
	para_Gx = mirvar(0);
	para_Gy = mirvar(0);
	para_h = mirvar(0);
	G = epoint_init();
	nG = epoint_init();
	bytes_to_big(SM2_NUMWORD, SM2_p, para_p);
	bytes_to_big(SM2_NUMWORD, SM2_a, para_a);
	bytes_to_big(SM2_NUMWORD, SM2_b, para_b);
	bytes_to_big(SM2_NUMWORD, SM2_n, para_n);
	bytes_to_big(SM2_NUMWORD, SM2_Gx, para_Gx);
	bytes_to_big(SM2_NUMWORD, SM2_Gy, para_Gy);
	bytes_to_big(SM2_NUMWORD, SM2_h, para_h);
	ecurve_init(para_a, para_b, para_p, MR_PROJECTIVE);//Initialises GF(p) elliptic curve.
	//MR_PROJECTIVE specifying projective coordinates
		if (!epoint_set(para_Gx, para_Gy, 0, G))//initialise point G
		{
			return ERR_ECURVE_INIT;
		}
	ecurve_mult(para_n, G, nG);
	if (!point_at_infinity(nG)) //test if the order of the point is n
	{
		return ERR_ORDER;
	}
	return 0;
}
/****************************************************************
Function: SM2_KeyGeneration
Description: calculate a pubKey out of a given priKey
Calls: SM2_TestPubKey
Called By:
Input: priKey // a big number lies in[1,n-2]
Output: pubKey // pubKey=[priKey]G
Return: 0: sucess
1: fail
Others:
****************************************************************/
int SM2_KeyGeneration(big priKey, epoint *pubKey)
{
	int i = 0;
	big x, y;
	x = mirvar(0);
	y = mirvar(0);
	ecurve_mult(priKey, G, pubKey);//�0�0       �0�9        �0�7
	epoint_get(pubKey, x, y);
	if (Test_PubKey(pubKey) != 0)
		return 1;
	else
		return 0;
}
/****************************************************************
Function: SM2_Encrypt
Description: SM2 encryption
Calls: SM2_KDF,Test_null,Test_Point,SM3_init,SM3_process,SM3_done
Called By:
Input: randK[SM2_NUMWORD] // a random number K lies in [1,n-1]
pubKey // public key of the cipher receiver
M[klen] // original message
klen // byte len of original message
Output: C[klen+SM2_NUMWORD*3] // cipher C1||C3||C2
Return: 0: sucess
1: S is point at infinity
5: the KDF output is all zero
Others:
****************************************************************/
int SM2_Encrypt(unsigned char* randK, epoint *pubKey, unsigned char M[], int klen, unsigned char C[])
{
	big C1x, C1y, x2, y2, rand;
	epoint *C1, *kP, *S;
	int i = 0;
	unsigned char x2y2[SM2_NUMWORD * 2] = { 0 };
	SM3_STATE md;
	C1x = mirvar(0);
	C1y = mirvar(0);
	x2 = mirvar(0);
	y2 = mirvar(0);
	rand = mirvar(0);
	C1 = epoint_init();
	kP = epoint_init();
	S = epoint_init();
	//Step2. calculate C1=[k]G=(rGx,rGy)
	bytes_to_big(SM2_NUMWORD, randK, rand);
	ecurve_mult(rand, G, C1); //C1=[k]G
	epoint_get(C1, C1x, C1y);
	big_to_bytes(SM2_NUMWORD, C1x, C, 1);
	big_to_bytes(SM2_NUMWORD, C1y, C + SM2_NUMWORD, 1);
	//Step3. test if S=[h]pubKey if the point at infinity
	ecurve_mult(para_h, pubKey, S);
	if (point_at_infinity(S))// if S is point at infinity, return error;
		return ERR_INFINITY_POINT;
	//Step4. calculate [k]PB=(x2,y2)
	ecurve_mult(rand, pubKey, kP); //kP=[k]P
	epoint_get(kP, x2, y2);
	//Step5. KDF(x2||y2,klen)
	big_to_bytes(SM2_NUMWORD, x2, x2y2, 1);
	big_to_bytes(SM2_NUMWORD, y2, x2y2 + SM2_NUMWORD, 1);
	SM3_KDF(x2y2, SM2_NUMWORD * 2, klen, C + SM2_NUMWORD * 3);
	if (Test_Null(C + SM2_NUMWORD * 3, klen) != 0)
		return ERR_ARRAY_NULL;
	//Step6. C2=M^t
	for (i = 0; i < klen; i++)
	{
		C[SM2_NUMWORD * 3 + i] = M[i] ^ C[SM2_NUMWORD * 3 + i];
	}
	//Step7. C3=hash(x2,M,y2)
	SM3_init(&md);
	SM3_process(&md, x2y2, SM2_NUMWORD);
	SM3_process(&md, M, klen);
	SM3_process(&md, x2y2 + SM2_NUMWORD, SM2_NUMWORD);
	SM3_done(&md, C + SM2_NUMWORD * 2);
	return 0;
}
/****************************************************************
Function: SM2_Decrypt
Description: SM2 decryption
Calls: SM2_KDF,Test_Point,SM3_init,SM3_process,SM3_done
Called By:
Input: dB // a big number lies in [1,n-2]
pubKey // [dB]G
C[Clen] // cipher C1||C3||C2
Clen // byte len of cipher
Output: M[Clen-SM2_NUMWORD*3] // decrypted data
Return: 0: sucess
1: S is a point at finity
3: C1 is not a valid point
5: KDF output is all zero
6: C3 does not match
Others:
****************************************************************/
int SM2_Decrypt(big dB, unsigned char C[], int Clen, unsigned char M[])
{
	SM3_STATE md;
	int i = 0;
	unsigned char x2y2[SM2_NUMWORD * 2] = { 0 };
	unsigned char hash[SM2_NUMWORD] = { 0 };
	big C1x, C1y, x2, y2;
	epoint *C1, *S, *dBC1;
	C1x = mirvar(0);
	C1y = mirvar(0);
	x2 = mirvar(0);
	y2 = mirvar(0);
	C1 = epoint_init();
	S = epoint_init();
	dBC1 = epoint_init();
	//Step1. test if C1 fits the curve
	bytes_to_big(SM2_NUMWORD, C, C1x);
	bytes_to_big(SM2_NUMWORD, C + SM2_NUMWORD, C1y);
	epoint_set(C1x, C1y, 0, C1);
	i = Test_Point(C1);
	if (i != 0)
		return i;
	//Step2. S=[h]C1 and test if S is the point at infinity
	ecurve_mult(para_h, C1, S);
	if (point_at_infinity(S))// if S is point at infinity, return error;
		return ERR_INFINITY_POINT;
	//Step3. [dB]C1=(x2,y2)
	ecurve_mult(dB, C1, dBC1);
	epoint_get(dBC1, x2, y2);
	big_to_bytes(SM2_NUMWORD, x2, x2y2, 1);
	big_to_bytes(SM2_NUMWORD, y2, x2y2 + SM2_NUMWORD, 1);
	//Step4. t=KDF(x2||y2,klen)
	SM3_KDF(x2y2, SM2_NUMWORD * 2, Clen - SM2_NUMWORD * 3, M);
	if (Test_Null(M, Clen - SM2_NUMWORD * 3) != 0)
		return ERR_ARRAY_NULL;
	//Step5. M=C2^t
	for (i = 0; i < Clen - SM2_NUMWORD * 3; i++)
		M[i] = M[i] ^ C[SM2_NUMWORD * 3 + i];
	//Step6. hash(x2,m,y2)
	SM3_init(&md);
	SM3_process(&md, x2y2, SM2_NUMWORD);
	SM3_process(&md, M, Clen - SM2_NUMWORD * 3);
	SM3_process(&md, x2y2 + SM2_NUMWORD, SM2_NUMWORD);
	SM3_done(&md, hash);
	if (memcmp(hash, C + SM2_NUMWORD * 2, SM2_NUMWORD) != 0)
		return ERR_C3_MATCH;
	else
		return 0;
}
/****************************************************************
Function: SM2_ENC_SelfTest
Description: test whether the SM2 calculation is correct by comparing the result with the standard data
Calls: SM2_init,SM2_ENC,SM2_DEC
Called By:
Input: NULL
Output: NULL
Return: 0: sucess
1: S is a point at finity
2: X or Y coordinate is beyond Fq
3: not a valid point on curve
4: the given point G is not a point of order n
5: KDF output is all zero
6: C3 does not match
8: public key generation error
9: SM2 encryption error
a: SM2 decryption error
Others:
****************************************************************/
int SM2_ENC_SelfTest()
{
	int tmp = 0, i = 0;
	unsigned char Cipher[115] = { 0 };
	unsigned char M[19] = { 0 };
	unsigned char kGxy[SM2_NUMWORD * 2] = { 0 };
	big ks, x, y;
	epoint *kG;
	//standard data
	unsigned char std_priKey[32] = { 0x39,0x45,0x20,0x8F,0x7B,0x21,0x44,0xB1,0x3F,0x36,0xE3,0x8A,0xC6,0xD3,0x9F,0x95,
	0x88,0x93,0x93,0x69,0x28,0x60,0xB5,0x1A,0x42,0xFB,0x81,0xEF,0x4D,0xF7,0xC5,0xB8 };
	unsigned char std_pubKey[64] = { 0x09,0xF9,0xDF,0x31,0x1E,0x54,0x21,0xA1,0x50,0xDD,0x7D,0x16,0x1E,0x4B,0xC5,0xC6,
	0x72,0x17,0x9F,0xAD,0x18,0x33,0xFC,0x07,0x6B,0xB0,0x8F,0xF3,0x56,0xF3,0x50,0x20,
	0xCC,0xEA,0x49,0x0C,0xE2,0x67,0x75,0xA5,0x2D,0xC6,0xEA,0x71,0x8C,0xC1,0xAA,0x60,
	0x0A,0xED,0x05,0xFB,0xF3,0x5E,0x08,0x4A,0x66,0x32,0xF6,0x07,0x2D,0xA9,0xAD,0x13 };
	unsigned char std_rand[32] = { 0x59,0x27,0x6E,0x27,0xD5,0x06,0x86,0x1A,0x16,0x68,0x0F,0x3A,0xD9,0xC0,0x2D,0xCC,
	0xEF,0x3C,0xC1,0xFA,0x3C,0xDB,0xE4,0xCE,0x6D,0x54,0xB8,0x0D,0xEA,0xC1,0xBC,0x21 };
	unsigned char std_Message[19] = { 0x65,0x6E,0x63,0x72,0x79,0x70,0x74,0x69,0x6F,0x6E,0x20,0x73,0x74,0x61,0x6E,
	0x64,0x61,0x72,0x64 };
	unsigned char std_Cipher[115] = { 0x04,0xEB,0xFC,0x71,0x8E,0x8D,0x17,0x98,0x62,0x04,0x32,0x26,0x8E,0x77,0xFE,0xB6,
	0x41,0x5E,0x2E,0xDE,0x0E,0x07,0x3C,0x0F,0x4F,0x64,0x0E,0xCD,0x2E,0x14,0x9A,0x73,
	0xE8,0x58,0xF9,0xD8,0x1E,0x54,0x30,0xA5,0x7B,0x36,0xDA,0xAB,0x8F,0x95,0x0A,0x3C,
	0x64,0xE6,0xEE,0x6A,0x63,0x09,0x4D,0x99,0x28,0x3A,0xFF,0x76,0x7E,0x12,0x4D,0xF0,
	0x59,0x98,0x3C,0x18,0xF8,0x09,0xE2,0x62,0x92,0x3C,0x53,0xAE,0xC2,0x95,0xD3,0x03,
	0x83,0xB5,0x4E,0x39,0xD6,0x09,0xD1,0x60,0xAF,0xCB,0x19,0x08,0xD0,0xBD,0x87,0x66,
	0x21,0x88,0x6C,0xA9,0x89,0xCA,0x9C,0x7D,0x58,0x08,0x73,0x07,0xCA,0x93,0x09,0x2D,0x65,0x1E,0xFA };
	mip = mirsys(1000, 16);
	mip->IOBASE = 16;
	x = mirvar(0);
	y = mirvar(0);
	ks = mirvar(0);
	kG = epoint_init();
	bytes_to_big(32, std_priKey, ks); //ks is the standard private key
	//initiate SM2 curve
	SM2_Init();
	//generate key pair
	tmp = SM2_KeyGeneration(ks, kG);
	if (tmp != 0)
		return tmp;
	epoint_get(kG, x, y);
	big_to_bytes(SM2_NUMWORD, x, kGxy, 1);
	big_to_bytes(SM2_NUMWORD, y, kGxy + SM2_NUMWORD, 1);
	if (memcmp(kGxy, std_pubKey, SM2_NUMWORD * 2) != 0)
		return ERR_SELFTEST_KG;
	puts("原文:");
	for (i = 0; i < 19; i++)
	{
		if (i > 0 && i % 8 == 0) printf("\n");
		printf("0x%x,", std_Message[i]);
	}
	//encrypt data and compare the result with the standard data
	tmp = SM2_Encrypt(std_rand, kG, std_Message, 19, Cipher);
	if (tmp != 0)
		return tmp;
	if (memcmp(Cipher, std_Cipher, 19 + SM2_NUMWORD * 3) != 0)
		return ERR_SELFTEST_ENC;


	puts("\n\n密文:");
	for (i = 0; i < 19 + SM2_NUMWORD * 3; i++)
	{
		if (i > 0 && i % 8 == 0) printf("\n");
		printf("0x%x,", Cipher[i]);
	}

	//decrypt cipher and compare the result with the standard data
	tmp = SM2_Decrypt(ks, Cipher, 115, M);
	if (tmp != 0)
		return tmp;

	puts("\n\n解密结果:");
	for (i = 0; i < 19; i++)
	{
		if (i>0&&i%8 == 0) printf("\n");
		printf("0x%x,", M[i]);
	}

	if (memcmp(M, std_Message, 19) != 0)
		return ERR_SELFTEST_DEC;
	puts("\n解密成功");

	return 0;
}
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat SM2_ENC.h
#pragma once

#include "miracl.h"

#define ECC_WORDSIZE 8
#define SM2_NUMBITS 256
#define SM2_NUMWORD (SM2_NUMBITS/ECC_WORDSIZE) //32
#define ERR_INFINITY_POINT 0x00000001
#define ERR_NOT_VALID_ELEMENT 0x00000002
#define ERR_NOT_VALID_POINT 0x00000003
#define ERR_ORDER 0x00000004
#define ERR_ARRAY_NULL 0x00000005
#define ERR_C3_MATCH 0x00000006
#define ERR_ECURVE_INIT 0x00000007
#define ERR_SELFTEST_KG 0x00000008
#define ERR_SELFTEST_ENC 0x00000009
#define ERR_SELFTEST_DEC 0x0000000A

extern unsigned char SM2_p[32];
extern unsigned char SM2_a[32];
extern unsigned char SM2_b[32];
extern unsigned char SM2_n[32];
extern unsigned char SM2_Gx[32];
extern unsigned char SM2_Gy[32];
extern unsigned char SM2_h[32];

 

big para_p, para_a, para_b, para_n, para_Gx, para_Gy, para_h;
epoint *G;
miracl *mip;
int Test_Point(epoint* point);
int Test_PubKey(epoint *pubKey);
int Test_Null(unsigned char array[], int len);
int SM2_Init();
int SM2_KeyGeneration(big priKey, epoint *pubKey);
int SM2_Encrypt(unsigned char* randK, epoint *pubKey, unsigned char M[], int klen, unsigned char C[]);
int SM2_Decrypt(big dB, unsigned char C[], int Clen, unsigned char M[]);
int SM2_ENC_SelfTest();
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat test.c

#include "SM2_ENC.h"

void main()
{
	SM2_ENC_SelfTest();
}
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat Makefile
# Makefile

# Compiler settings
CC = gcc
CFLAGS = -Wall
LDFLAGS = -lmymiracl # Assuming you have a library called 'mymiracl' for MIRACL functions

# Source and header files
SOURCES = SM2_ENC.c kdf.c test.c
HEADERS = kdf.h miracl.h mirdef.h SM2_ENC.h

# Executable name
EXECUTABLE = test

# Default target
all: $(EXECUTABLE)

# Linking the executable
$(EXECUTABLE): $(SOURCES) $(HEADERS)
	$(CC) $(CFLAGS) $(SOURCES) -o $(EXECUTABLE) $(LDFLAGS)

# Clean target
clean:
	rm -f $(EXECUTABLE)

# Run target
run: $(EXECUTABLE)
	./$(EXECUTABLE)

# Phony targets
.PHONY: all clean run
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ make
gcc -Wall SM2_ENC.c kdf.c test.c -o test -lmymiracl 
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ ./test
原文:
0x65,0x6E,0x63,0x72,0x79,0x70,0x74,0x69,0x6F,0x6E,0x20,0x73,0x74,0x61,0x6E,0x64,0x61,0x72,0x64 


密文:
0x04,0xEB,0xFC,0x71,0x8E,0x8D,0x17,0x98,0x62,0x04,0x32,0x26,0x8E,0x77,0xFE,0xB6,0x41,0x5E,0x2E,0xDE,0x0E,0x07,0x3C,0x0F,0x4F,0x64,0x0E,0xCD,0x2E,0x14,0x9A,0x73,0xE8,0x58,0xF9,0xD8,0x1E,0x54,0x30,0xA5,0x7B,0x36,0xDA,0xAB,0x8F,0x95,0x0A,0x3C,0x64,0xE6,0xEE,0x6A,0x63,0x09,0x4D,0x99,0x28,0x3A,0xFF,0x76,0x7E,0x12,0x4D,0xF0,0x59,0x98,0x3C,0x18,0xF8,0x09,0xE2,0x62,0x92,0x3C,0x53,0xAE,0xC2,0x95,0xD3,0x03,0x83,0xB5,0x4E,0x39,0xD6,0x09,0xD1,0x60,0xAF,0xCB,0x19,0x08,0xD0,0xBD,0x87,0x66,0x21,0x88,0x6C,0xA9,0x89,0xCA,0x9C,0x7D,0x58,0x08,0x73,0x07,0xCA,0x93,0x09,0x2D,0x65,0x1E,0xFA


解密结果:
0x65,0x6E,0x63,0x72,0x79,0x70,0x74,0x69,0x6F,0x6E,0x20,0x73,0x74,0x61,0x6E,0x64,0x61,0x72,0x64 

解密成功
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiamijiaocaidaima$ git add kdf.c  kdf.h  Makefile  miracl.h  mirdef.h  SM2_ENC.c  SM2_ENC.h  test.c
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiamijiaocaidaima$ git commit -m "sm2 jia mi jie mi jiao cai dai ma"
[master 594b472] sm2 jia mi jie mi jiao cai dai ma
 8 files changed, 2515 insertions(+)
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/Makefile
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/SM2_ENC.c
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/SM2_ENC.h
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/kdf.c
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/kdf.h
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/miracl.h
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/mirdef.h
 create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/test.c
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiamijiaocaidaima$ git log
commit 594b472ff865e212fab25e77d29d4a6cffdd2f80 (HEAD -> master)
Author: fengtairui <1978274655@qq.com>
Date:   Sun Nov 3 23:38:55 2024 +0800

    sm2 jia mi jie mi jiao cai dai ma
命令行验证
自验证成功

签名验签

源代码运行
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ tree
.
├── kdf.c
├── kdf.h
├── Makefile
├── miracl.h
├── mirdef.h
├── SM2_sv.c
├── SM2_sv.h
└── test.c

1 directory, 8 files
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat kdf.c
#include "kdf.h"
#include "SM2_sv.h"


/****************************************************************
Function: BiToW
Description: calculate W from Bi
Calls:
Called By: SM3_compress
Input: Bi[16] //a block of a message
Output: W[68]
Return: null
Others:
****************************************************************/
void BiToW(unsigned long Bi[], unsigned long W[])
{
	int i;
	unsigned long tmp;
	for (i = 0; i <= 15; i++)
	{
		W[i] = Bi[i];
	}
	for (i = 16; i <= 67; i++)
	{
		tmp = W[i - 16]
			^ W[i - 9]
			^ SM3_rotl32(W[i - 3], 15);
		W[i] = SM3_p1(tmp)
			^ (SM3_rotl32(W[i - 13], 7))
			^ W[i - 6];
	}
}
/*****************************************************************
Function: WToW1
Description: calculate W1 from W
Calls:
Called By: SM3_compress
Input: W[68]
Output: W1[64]
Return: null
Others:
*****************************************************************/
void WToW1(unsigned long W[], unsigned long W1[])
{
	int i;
	for (i = 0; i <= 63; i++)
	{
		W1[i] = W[i] ^ W[i + 4];
	}
}
/******************************************************************
Function: CF
Description: calculate the CF compress function and update V
Calls:
Called By: SM3_compress
Input: W[68]
W1[64]
V[8]
Output: V[8]
Return: null
Others:
********************************************************************/
void CF(unsigned long W[], unsigned long W1[], unsigned long V[])
{
	unsigned long SS1;
	unsigned long SS2;
	unsigned long TT1;
	unsigned long TT2;
	unsigned long A, B, C, D, E, F, G, H;
	unsigned long T = SM3_T1;
	unsigned long FF;
	unsigned long GG;
	int j;
	//reg init,set ABCDEFGH=V0
	A = V[0];
	B = V[1];
	C = V[2];
	D = V[3];
	E = V[4];
	F = V[5];
	G = V[6];
	H = V[7];
	for (j = 0; j <= 63; j++)
	{
		//SS1
		if (j == 0)
		{
			T = SM3_T1;
		}
		else if (j == 16)
		{
			T = SM3_rotl32(SM3_T2, 16);
		}
		else
		{
			T = SM3_rotl32(T, 1);
		}
		SS1 = SM3_rotl32((SM3_rotl32(A, 12) + E + T), 7);
		//SS2
		SS2 = SS1 ^ SM3_rotl32(A, 12);
		//TT1
		if (j <= 15)
		{
			FF = SM3_ff0(A, B, C);
		}
		else
		{
			FF = SM3_ff1(A, B, C);
		}
		TT1 = FF + D + SS2 + *W1;
		W1++;
		//TT2
		if (j <= 15)
		{
			GG = SM3_gg0(E, F, G);
		}
		else
		{
			GG = SM3_gg1(E, F, G);
		}
		TT2 = GG + H + SS1 + *W;
		W++;
		//D
		D = C;
		//C
		C = SM3_rotl32(B, 9);
		//B
		B = A;
		//A
		A = TT1;
		//H
		H = G;
		//G
		G = SM3_rotl32(F, 19);
		//F
		F = E;
		//E
		E = SM3_p0(TT2);
	}
	//update V
	V[0] = A ^ V[0];
	V[1] = B ^ V[1];
	V[2] = C ^ V[2];
	V[3] = D ^ V[3];
	V[4] = E ^ V[4];
	V[5] = F ^ V[5];
	V[6] = G ^ V[6];
	V[7] = H ^ V[7];
}
/******************************************************************************
Function: BigEndian
Description: unsigned int endian converse.GM/T 0004-2012 requires to use big-endian.
if CPU uses little-endian, BigEndian function is a necessary
call to change the little-endian format into big-endian format.
Calls:
Called By: SM3_compress, SM3_done
Input: src[bytelen]
bytelen
Output: des[bytelen]
Return: null
Others: src and des could implies the same address
*******************************************************************************/
void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[])
{
	unsigned char tmp = 0;
	unsigned long i = 0;
	for (i = 0; i < bytelen / 4; i++)
	{
		tmp = des[4 * i];
		des[4 * i] = src[4 * i + 3];
		src[4 * i + 3] = tmp;
		tmp = des[4 * i + 1];
		des[4 * i + 1] = src[4 * i + 2];
		des[4 * i + 2] = tmp;
	}
}
/******************************************************************************
Function: SM3_init
Description: initiate SM3 state
Calls:
Called By: SM3_256
Input: SM3_STATE *md
Output: SM3_STATE *md
Return: null
Others:
*******************************************************************************/
void SM3_init(SM3_STATE *md)
{
	md->curlen = md->length = 0;
	md->state[0] = SM3_IVA;
	md->state[1] = SM3_IVB;
	md->state[2] = SM3_IVC;
	md->state[3] = SM3_IVD;
	md->state[4] = SM3_IVE;
	md->state[5] = SM3_IVF;
	md->state[6] = SM3_IVG;
	md->state[7] = SM3_IVH;
}
/******************************************************************************
Function: SM3_compress
Description: compress a single block of message
Calls: BigEndian
BiToW
WToW1
CF
Called By: SM3_256
Input: SM3_STATE *md
Output: SM3_STATE *md
Return: null
Others:
*******************************************************************************/
void SM3_compress(SM3_STATE * md)
{
	unsigned long W[68];
	unsigned long W1[64];
	//if CPU uses little-endian, BigEndian function is a necessary call
	BigEndian(md->buf, 64, md->buf);
	BiToW((unsigned long *)md->buf, W);
	WToW1(W, W1);
	CF(W, W1, md->state);
}
/******************************************************************************
Function: SM3_process
Description: compress the first (len/64) blocks of message
Calls: SM3_compress
Called By: SM3_256
Input: SM3_STATE *md
unsigned char buf[len] //the input message
int len //bytelen of message
Output: SM3_STATE *md
Return: null
Others:
*******************************************************************************/
void SM3_process(SM3_STATE * md, unsigned char *buf, int len)
{
	while (len--)
	{
		/* copy byte */
		md->buf[md->curlen] = *buf++;
		md->curlen++;
		/* is 64 bytes full? */
		if (md->curlen == 64)
		{
			SM3_compress(md);
			md->length += 512;
			md->curlen = 0;
		}
	}
}
/******************************************************************************
Function: SM3_done
Description: compress the rest message that the SM3_process has left behind
Calls: SM3_compress
Called By: SM3_256
Input: SM3_STATE *md
Output: unsigned char *hash
Return: null
Others:
*******************************************************************************/
void SM3_done(SM3_STATE *md, unsigned char hash[])
{
	int i;
	unsigned char tmp = 0;
	/* increase the bit length of the message */
	md->length += md->curlen << 3;
	/* append the '1' bit */
	md->buf[md->curlen] = 0x80;
	md->curlen++;
	/* if the length is currently above 56 bytes, appends zeros till
	it reaches 64 bytes, compress the current block, creat a new
	block by appending zeros and length,and then compress it
	*/
	if (md->curlen > 56)
	{
		for (; md->curlen < 64;)
		{
			md->buf[md->curlen] = 0;
			md->curlen++;
		}
		SM3_compress(md);
		md->curlen = 0;
	}
	/* if the length is less than 56 bytes, pad upto 56 bytes of zeroes */
	for (; md->curlen < 56;)
	{
		md->buf[md->curlen] = 0;
		md->curlen++;
	}
	/* since all messages are under 2^32 bits we mark the top bits zero */
	for (i = 56; i < 60; i++)
	{
		md->buf[i] = 0;
	}
	/* append length */
	md->buf[63] = md->length & 0xff;
	md->buf[62] = (md->length >> 8) & 0xff;
	md->buf[61] = (md->length >> 16) & 0xff;
	md->buf[60] = (md->length >> 24) & 0xff;
	SM3_compress(md);
	/* copy output */
	memcpy(hash, md->state, SM3_len / 8);
	BigEndian(hash, SM3_len / 8, hash);//if CPU uses little-endian, BigEndian function is a necessary call
}
/******************************************************************************
Function: SM3_256
Description: calculate a hash value from a given message
Calls: SM3_init
SM3_process
SM3_done
Called By:
Input: unsigned char buf[len] //the input message
int len //bytelen of the message
Output: unsigned char hash[32]
Return: null
Others:
*******************************************************************************/
void SM3_256(unsigned char buf[], int len, unsigned char hash[])
{
	SM3_STATE md;
	SM3_init(&md);
	SM3_process(&md, buf, len);
	SM3_done(&md, hash);
}
/******************************************************************************
Function: SM3_KDF
Description: key derivation function
Calls: SM3_init
SM3_process
SM3_done
Called By:
Input: unsigned char Z[zlen]
unsigned short zlen //bytelen of Z
unsigned short klen //bytelen of K
Output: unsigned char K[klen] //shared secret key
Return: null
Others:
*******************************************************************************/
void SM3_KDF(unsigned char Z[], unsigned short zlen, unsigned short klen, unsigned char K[])
{
	unsigned short i, j, t;
	unsigned int bitklen;
	SM3_STATE md;
	unsigned char Ha[SM2_NUMWORD];
	unsigned char ct[4] = { 0,0,0,1 };
	bitklen = klen * 8;
	if (bitklen%SM2_NUMBITS)
		t = bitklen / SM2_NUMBITS + 1;
	else
		t = bitklen / SM2_NUMBITS;
	//s4: K=Ha1||Ha2||...
	for (i = 1; i < t; i++)
	{
		//s2: Hai=Hv(Z||ct)
		SM3_init(&md);
		SM3_process(&md, Z, zlen);
		SM3_process(&md, ct, 4);
		SM3_done(&md, Ha);
		memcpy((K + SM2_NUMWORD * (i - 1)), Ha, SM2_NUMWORD);
		if (ct[3] == 0xff)
		{
			ct[3] = 0;
			if (ct[2] == 0xff)
			{
				ct[2] = 0;
				if (ct[1] == 0xff)
				{
					ct[1] = 0;
					ct[0]++;
				}
				else ct[1]++;
			}
			else ct[2]++;
		}
		else ct[3]++;
	}
	//s3: klen/v       �0�6   
	SM3_init(&md);
	SM3_process(&md, Z, zlen);
	SM3_process(&md, ct, 4);
	SM3_done(&md, Ha);
	if (bitklen%SM2_NUMBITS)
	{
		i = (SM2_NUMBITS - bitklen + SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
		j = (bitklen - SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, j);
	}
	else
	{
		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, SM2_NUMWORD);
	}
}
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat kdf.h
#ifndef KDF_H
#define KDF_H

#include <string.h>
#include "SM2_sv.h" // 确保这个头文件包含了 SM2_NUMWORD 和 SM2_NUMBITS 的定义

#define SM3_len 256
#define SM3_T1 0x79CC4519
#define SM3_T2 0x7A879D8A
#define SM3_IVA 0x7380166f
#define SM3_IVB 0x4914b2b9
#define SM3_IVC 0x172442d7
#define SM3_IVD 0xda8a0600
#define SM3_IVE 0xa96f30bc
#define SM3_IVF 0x163138aa
#define SM3_IVG 0xe38dee4d
#define SM3_IVH 0xb0fb0e4e

/* Various logical functions */
#define SM3_p1(x) (x^SM3_rotl32(x,15)^SM3_rotl32(x,23))
#define SM3_p0(x) (x^SM3_rotl32(x,9)^SM3_rotl32(x,17))
#define SM3_ff0(a,b,c) (a^b^c)
#define SM3_ff1(a,b,c) ((a&b)|(a&c)|(b&c))
#define SM3_gg0(e,f,g) (e^f^g)
#define SM3_gg1(e,f,g) ((e&f)|((~e)&g))
#define SM3_rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
#define SM3_rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))

typedef struct {
    unsigned long state[8];
    unsigned long length;
    unsigned long curlen;
    unsigned char buf[64];
} SM3_STATE;

void BiToW(unsigned long Bi[], unsigned long W[]);
void WToW1(unsigned long W[], unsigned long W1[]);
void CF(unsigned long W[], unsigned long W1[], unsigned long V[]);
void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[]);
void SM3_init(SM3_STATE *md);
void SM3_process(SM3_STATE *md, unsigned char buf[], int len);
void SM3_done(SM3_STATE *md, unsigned char *hash);
void SM3_compress(SM3_STATE *md);
void SM3_256(unsigned char buf[], int len, unsigned char hash[]);
void SM3_KDF(unsigned char *Z, unsigned short zlen, unsigned short klen, unsigned char *K);

#endiffengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat miracl.h
/***************************************************************************
                                                                           *
Copyright 2013 CertiVox UK Ltd.                                           *
                                                                           *
This file is part of CertiVox MIRACL Crypto SDK.                           *
                                                                           *
The CertiVox MIRACL Crypto SDK provides developers with an                 *
extensive and efficient set of cryptographic functions.                    *
For further information about its features and functionalities please      *
refer to http://www.certivox.com                                           *
                                                                           *
* The CertiVox MIRACL Crypto SDK is free software: you can                 *
  redistribute it and/or modify it under the terms of the                  *
  GNU Affero General Public License as published by the                    *
  Free Software Foundation, either version 3 of the License,               *
  or (at your option) any later version.                                   *
                                                                           *
* The CertiVox MIRACL Crypto SDK is distributed in the hope                *
  that it will be useful, but WITHOUT ANY WARRANTY; without even the       *
  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
  See the GNU Affero General Public License for more details.              *
                                                                           *
* You should have received a copy of the GNU Affero General Public         *
  License along with CertiVox MIRACL Crypto SDK.                           *
  If not, see <http://www.gnu.org/licenses/>.                              *
                                                                           *
You can be released from the requirements of the license by purchasing     *
a commercial license. Buying such a license is mandatory as soon as you    *
develop commercial activities involving the CertiVox MIRACL Crypto SDK     *
without disclosing the source code of your own applications, or shipping   *
the CertiVox MIRACL Crypto SDK with a closed source product.               *
                                                                           *
***************************************************************************/

#ifndef MIRACL_H
#define MIRACL_H

/*
 *   main MIRACL header - miracl.h.
 */

#include "mirdef.h"

/* Some modifiable defaults... */

/* Use a smaller buffer if space is limited, don't be so wasteful! */

#ifdef MR_STATIC
#define MR_DEFAULT_BUFFER_SIZE 260
#else
#define MR_DEFAULT_BUFFER_SIZE 1024
#endif

/* see mrgf2m.c */

#ifndef MR_KARATSUBA
#define MR_KARATSUBA 2
#endif

#ifndef MR_DOUBLE_BIG

#ifdef MR_KCM
  #ifdef MR_FLASH
    #define MR_SPACES 32
  #else
    #define MR_SPACES 31
  #endif
#else
  #ifdef MR_FLASH
    #define MR_SPACES 28
  #else
    #define MR_SPACES 27
  #endif
#endif

#else

#ifdef MR_KCM
  #ifdef MR_FLASH
    #define MR_SPACES 44
  #else
    #define MR_SPACES 43
  #endif
#else
  #ifdef MR_FLASH
    #define MR_SPACES 40
  #else
    #define MR_SPACES 39
  #endif
#endif

#endif

/* To avoid name clashes - undefine this */

/* #define compare mr_compare */

#ifdef MR_AVR
#include <avr/pgmspace.h>
#endif

/* size of bigs and elliptic curve points for memory allocation from stack or heap */

#define MR_ROUNDUP(a,b) ((a)-1)/(b)+1

#define MR_SL sizeof(long)

#ifdef MR_STATIC

#define MR_SIZE (((sizeof(struct bigtype)+(MR_STATIC+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
#define MR_BIG_RESERVE(n) ((n)*MR_SIZE+MR_SL)

#ifdef MR_AFFINE_ONLY
#define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
#else
#define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(3))-1)/MR_SL+1)*MR_SL
#endif
#define MR_ECP_RESERVE(n) ((n)*MR_ESIZE+MR_SL)

#define MR_ESIZE_A (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
#define MR_ECP_RESERVE_A(n) ((n)*MR_ESIZE_A+MR_SL)


#endif

/* useful macro to convert size of big in words, to size of required structure */

#define mr_size(n) (((sizeof(struct bigtype)+((n)+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
#define mr_big_reserve(n,m) ((n)*mr_size(m)+MR_SL)

#define mr_esize_a(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
#define mr_ecp_reserve_a(n,m) ((n)*mr_esize_a(m)+MR_SL)

#ifdef MR_AFFINE_ONLY
#define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
#else
#define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(3,(n)))-1)/MR_SL+1)*MR_SL 
#endif
#define mr_ecp_reserve(n,m) ((n)*mr_esize(m)+MR_SL)


/* if basic library is static, make sure and use static C++ */

#ifdef MR_STATIC
 #ifndef BIGS
  #define BIGS MR_STATIC
 #endif
 #ifndef ZZNS
  #define ZZNS MR_STATIC
 #endif
 #ifndef GF2MS
  #define GF2MS MR_STATIC
 #endif
#endif

#ifdef __ia64__
#if MIRACL==64
#define MR_ITANIUM
#include <ia64intrin.h>
#endif
#endif

#ifdef _M_X64
#ifdef _WIN64
#if MIRACL==64
#define MR_WIN64
#include <intrin.h>
#endif
#endif
#endif

#ifndef MR_NO_FILE_IO
#include <stdio.h>
#endif
               /* error returns */

#define MR_ERR_BASE_TOO_BIG       1
#define MR_ERR_DIV_BY_ZERO        2
#define MR_ERR_OVERFLOW           3
#define MR_ERR_NEG_RESULT         4
#define MR_ERR_BAD_FORMAT         5
#define MR_ERR_BAD_BASE           6
#define MR_ERR_BAD_PARAMETERS     7
#define MR_ERR_OUT_OF_MEMORY      8
#define MR_ERR_NEG_ROOT           9
#define MR_ERR_NEG_POWER         10
#define MR_ERR_BAD_ROOT          11
#define MR_ERR_INT_OP            12
#define MR_ERR_FLASH_OVERFLOW    13
#define MR_ERR_TOO_BIG           14
#define MR_ERR_NEG_LOG           15
#define MR_ERR_DOUBLE_FAIL       16
#define MR_ERR_IO_OVERFLOW       17
#define MR_ERR_NO_MIRSYS         18
#define MR_ERR_BAD_MODULUS       19
#define MR_ERR_NO_MODULUS        20
#define MR_ERR_EXP_TOO_BIG       21
#define MR_ERR_NOT_SUPPORTED     22
#define MR_ERR_NOT_DOUBLE_LEN    23
#define MR_ERR_NOT_IRREDUC       24
#define MR_ERR_NO_ROUNDING       25
#define MR_ERR_NOT_BINARY        26
#define MR_ERR_NO_BASIS          27
#define MR_ERR_COMPOSITE_MODULUS 28
#define MR_ERR_DEV_RANDOM        29

               /* some useful definitions */

#define forever for(;;)   

#define mr_abs(x)  ((x)<0? (-(x)) : (x))

#ifndef TRUE
  #define TRUE 1
#endif
#ifndef FALSE
  #define FALSE 0
#endif

#define OFF 0
#define ON 1
#define PLUS 1
#define MINUS (-1)

#define M1 (MIRACL-1)
#define M2 (MIRACL-2)
#define M3 (MIRACL-3)
#define M4 (MIRACL-4)
#define TOPBIT ((mr_small)1<<M1)
#define SECBIT ((mr_small)1<<M2)
#define THDBIT ((mr_small)1<<M3)
#define M8 (MIRACL-8)

#define MR_MAXDEPTH 24
                              /* max routine stack depth */
/* big and flash variables consist of an encoded length, *
 * and an array of mr_smalls containing the digits       */

#ifdef MR_COUNT_OPS
extern int fpm2,fpi2,fpc,fpa,fpx;
#endif

typedef int BOOL;

#define MR_BYTE unsigned char

#ifdef MR_BITSINCHAR
 #if MR_BITSINCHAR == 8
  #define MR_TOBYTE(x) ((MR_BYTE)(x))
 #else
  #define MR_TOBYTE(x) ((MR_BYTE)((x)&0xFF))
 #endif
#else
 #define MR_TOBYTE(x) ((MR_BYTE)(x))
#endif

#ifdef MR_FP

  typedef mr_utype mr_small;
  #ifdef mr_dltype
  typedef mr_dltype mr_large;
  #endif

  #define MR_DIV(a,b)    (modf((a)/(b),&dres),dres)

  #ifdef MR_FP_ROUNDING

/* slightly dicey - for example the optimizer might remove the MAGIC ! */

    #define MR_LROUND(a)   ( ( (a) + MR_MAGIC ) - MR_MAGIC )
  #else
    #define MR_LROUND(a)   (modfl((a),&ldres),ldres)
  #endif

  #define MR_REMAIN(a,b) ((a)-(b)*MR_DIV((a),(b)))

#else

  typedef unsigned mr_utype mr_small;
  #ifdef mr_dltype
    typedef unsigned mr_dltype mr_large;
  #endif
  #ifdef mr_qltype
    typedef unsigned mr_qltype mr_vlarge;
  #endif

  #define MR_DIV(a,b)    ((a)/(b))
  #define MR_REMAIN(a,b) ((a)%(b))
  #define MR_LROUND(a)   ((a))
#endif


/* It might be wanted to change this to unsigned long */

typedef unsigned int mr_lentype;

struct bigtype
{
    mr_lentype len;
    mr_small *w;
};                

typedef struct bigtype *big;
typedef big zzn;

typedef big flash;

#define MR_MSBIT ((mr_lentype)1<<(MR_IBITS-1))

#define MR_OBITS (MR_MSBIT-1)

#if MIRACL >= MR_IBITS
#define MR_TOOBIG (1<<(MR_IBITS-2))
#else
#define MR_TOOBIG (1<<(MIRACL-1))
#endif

#ifdef  MR_FLASH
#define MR_EBITS (8*sizeof(double) - MR_FLASH)
                                  /* no of Bits per double exponent */
#define MR_BTS 16
#define MR_MSK 0xFFFF

#endif

/* Default Hash function output size in bytes */
#define MR_HASH_BYTES     32

/* Marsaglia & Zaman Random number generator */
/*         constants      alternatives       */
#define NK   37           /* 21 */
#define NJ   24           /*  6 */
#define NV   14           /*  8 */

/* Use smaller values if memory is precious */

#ifdef mr_dltype

#ifdef MR_LITTLE_ENDIAN 
#define MR_BOT 0
#define MR_TOP 1
#endif
#ifdef MR_BIG_ENDIAN
#define MR_BOT 1
#define MR_TOP 0
#endif

union doubleword
{
    mr_large d;
    mr_small h[2];
};

#endif

/* chinese remainder theorem structures */

typedef struct {
big *C;
big *V;
big *M;
int NP;
} big_chinese;

typedef struct {
mr_utype *C;
mr_utype *V;
mr_utype *M;
int NP;
} small_chinese;

/* Cryptographically strong pseudo-random number generator */

typedef struct {
mr_unsign32 ira[NK];  /* random number...   */
int         rndptr;   /* ...array & pointer */
mr_unsign32 borrow;
int pool_ptr;
char pool[MR_HASH_BYTES];    /* random pool */
} csprng;

/* secure hash Algorithm structure */

typedef struct {
mr_unsign32 length[2];
mr_unsign32 h[8];
mr_unsign32 w[80];
} sha256;

typedef sha256 sha;

#ifdef mr_unsign64

typedef struct {
mr_unsign64 length[2];
mr_unsign64 h[8];
mr_unsign64 w[80];
} sha512;

typedef sha512 sha384;

typedef struct {
mr_unsign64 length;
mr_unsign64 S[5][5];
int rate,len;
} sha3;

#endif

/* Symmetric Encryption algorithm structure */

#define MR_ECB   0
#define MR_CBC   1
#define MR_CFB1  2
#define MR_CFB2  3
#define MR_CFB4  5
#define MR_PCFB1 10
#define MR_PCFB2 11
#define MR_PCFB4 13
#define MR_OFB1  14
#define MR_OFB2  15
#define MR_OFB4  17
#define MR_OFB8  21
#define MR_OFB16 29

typedef struct {
int Nk,Nr;
int mode;
mr_unsign32 fkey[60];
mr_unsign32 rkey[60];
char f[16];
} aes;

/* AES-GCM suppport. See mrgcm.c */

#define GCM_ACCEPTING_HEADER 0
#define GCM_ACCEPTING_CIPHER 1
#define GCM_NOT_ACCEPTING_MORE 2
#define GCM_FINISHED 3
#define GCM_ENCRYPTING 0
#define GCM_DECRYPTING 1

typedef struct {
mr_unsign32 table[128][4]; /* 2k bytes */
MR_BYTE stateX[16];
MR_BYTE Y_0[16];
mr_unsign32 counter;
mr_unsign32 lenA[2],lenC[2];
int status;
aes a;
} gcm;

               /* Elliptic curve point status */

#define MR_EPOINT_GENERAL    0
#define MR_EPOINT_NORMALIZED 1
#define MR_EPOINT_INFINITY   2

#define MR_NOTSET     0
#define MR_PROJECTIVE 0
#define MR_AFFINE     1
#define MR_BEST       2
#define MR_TWIST      8

#define MR_OVER       0
#define MR_ADD        1
#define MR_DOUBLE     2

/* Twist type */

#define MR_QUADRATIC 2
#define MR_CUBIC_M   0x3A
#define MR_CUBIC_D   0x3B
#define MR_QUARTIC_M 0x4A
#define MR_QUARTIC_D 0x4B
#define MR_SEXTIC_M  0x6A
#define MR_SEXTIC_D  0x6B


/* Fractional Sliding Windows for ECC - how much precomputation storage to use ? */
/* Note that for variable point multiplication there is an optimal value 
   which can be reduced if space is short. For fixed points its a matter of 
   how much ROM is available to store precomputed points.
   We are storing the k points (P,3P,5P,7P,...,[2k-1].P) */

/* These values can be manually tuned for optimal performance... */

#ifdef MR_SMALL_EWINDOW
#define MR_ECC_STORE_N  3   /* point store for ecn  variable point multiplication */
#define MR_ECC_STORE_2M 3   /* point store for ec2m variable point multiplication */
#define MR_ECC_STORE_N2 3   /* point store for ecn2 variable point multiplication */
#else
#define MR_ECC_STORE_N  8   /* 8/9 is close to optimal for 256 bit exponents */
#define MR_ECC_STORE_2M 9   
#define MR_ECC_STORE_N2 8   
#endif

/*#define MR_ECC_STORE_N2_PRECOMP MR_ECC_STORE_N2 */
                            /* Might want to make this bigger.. */

/* If multi-addition is of m points, and s precomputed values are required, this is max of m*s (=4.10?) */
#define MR_MAX_M_T_S 64

/* Elliptic Curve epoint structure. Uses projective (X,Y,Z) co-ordinates */

typedef struct {
int marker;
big X;
big Y;
#ifndef MR_AFFINE_ONLY
big Z;
#endif
} epoint;


/* Structure for Comb method for finite *
   field exponentiation with precomputation */

typedef struct {
#ifdef MR_STATIC
    const mr_small *table;
#else
    mr_small *table;
#endif
    big n; 
    int window;
    int max;
} brick;

/* Structure for Comb method for elliptic *
   curve exponentiation with precomputation  */

typedef struct {
#ifdef MR_STATIC
    const mr_small *table; 
#else
    mr_small *table;
#endif
    big a,b,n;
    int window;
    int max;
} ebrick;

typedef struct {
#ifdef MR_STATIC
    const mr_small *table;
#else
    mr_small *table;
#endif
    big a6,a2;
    int m,a,b,c;
    int window;
    int max;
} ebrick2;

typedef struct
{
    big a;
    big b;
} zzn2;

typedef struct
{
    zzn2 a;
    zzn2 b;
    BOOL unitary;
} zzn4;

typedef struct 
{
    int marker;
    zzn2 x;
    zzn2 y;
#ifndef MR_AFFINE_ONLY
    zzn2 z;
#endif

} ecn2;

typedef struct
{
    big a;
    big b;
    big c;
} zzn3;

typedef struct
{
	zzn2 a;
	zzn2 b;
	zzn2 c;
} zzn6_3x2;

/* main MIRACL instance structure */

/* ------------------------------------------------------------------------*/

typedef struct {
mr_small base;       /* number base     */
mr_small apbase;     /* apparent base   */
int   pack;          /* packing density */
int   lg2b;          /* bits in base    */
mr_small base2;      /* 2^mr_lg2b          */
BOOL (*user)(void);  /* pointer to user supplied function */

int   nib;           /* length of bigs  */
#ifndef MR_STRIPPED_DOWN
int   depth;                 /* error tracing ..*/
int   trace[MR_MAXDEPTH];    /* .. mechanism    */
#endif
BOOL  check;         /* overflow check  */
BOOL  fout;          /* Output to file   */
BOOL  fin;           /* Input from file  */
BOOL  active;

#ifndef MR_NO_FILE_IO

FILE  *infile;       /* Input file       */
FILE  *otfile;       /* Output file      */

#endif


#ifndef MR_NO_RAND
mr_unsign32 ira[NK];  /* random number...   */
int         rndptr;   /* ...array & pointer */
mr_unsign32 borrow;
#endif

            /* Montgomery constants */
mr_small ndash;
big modulus;
big pR;
BOOL ACTIVE;
BOOL MONTY;

                       /* Elliptic Curve details   */
#ifndef MR_NO_SS
BOOL SS;               /* True for Super-Singular  */
#endif
#ifndef MR_NOKOBLITZ
BOOL KOBLITZ;          /* True for a Koblitz curve */
#endif
#ifndef MR_AFFINE_ONLY
int coord;
#endif
int Asize,Bsize;

int M,AA,BB,CC;     /* for GF(2^m) curves */

/*
mr_small pm,mask;
int e,k,Me,m;       for GF(p^m) curves */


#ifndef MR_STATIC

int logN;           /* constants for fast fourier fft multiplication */
int nprimes,degree;
mr_utype *prime,*cr;
mr_utype *inverse,**roots;
small_chinese chin;
mr_utype const1,const2,const3;
mr_small msw,lsw;
mr_utype **s1,**s2;   /* pre-computed tables for polynomial reduction */
mr_utype **t;         /* workspace */
mr_utype *wa;
mr_utype *wb;
mr_utype *wc;

#endif

BOOL same;
BOOL first_one;
BOOL debug;

big w0;            /* workspace bigs  */
big w1,w2,w3,w4;
big w5,w6,w7;
big w8,w9,w10,w11;
big w12,w13,w14,w15;
big sru;
big one;

#ifdef MR_KCM
big big_ndash;
big ws,wt;
#endif

big A,B;

/* User modifiables */

#ifndef MR_SIMPLE_IO
int  IOBSIZ;       /* size of i/o buffer */
#endif
BOOL ERCON;        /* error control   */
int  ERNUM;        /* last error code */
int  NTRY;         /* no. of tries for probablistic primality testing   */
#ifndef MR_SIMPLE_IO
int  INPLEN;       /* input length               */
#ifndef MR_SIMPLE_BASE
int  IOBASE;       /* base for input and output */

#endif
#endif
#ifdef MR_FLASH
BOOL EXACT;        /* exact flag      */
BOOL RPOINT;       /* =ON for radix point, =OFF for fractions in output */
#endif
#ifndef MR_STRIPPED_DOWN
BOOL TRACER;       /* turns trace tracker on/off */
#endif

#ifdef MR_STATIC
const int *PRIMES;                      /* small primes array         */
#ifndef MR_SIMPLE_IO
char IOBUFF[MR_DEFAULT_BUFFER_SIZE];    /* i/o buffer    */
#endif
#else
int *PRIMES;        /* small primes array         */
#ifndef MR_SIMPLE_IO
char *IOBUFF;       /* i/o buffer    */
#endif
#endif

#ifdef MR_FLASH
int   workprec;
int   stprec;        /* start precision */

int RS,RD;
double D;

double db,n,p;
int a,b,c,d,r,q,oldn,ndig;
mr_small u,v,ku,kv;

BOOL last,carryon;
flash pi;

#endif

#ifdef MR_FP_ROUNDING
mr_large inverse_base;
#endif

#ifndef MR_STATIC
char *workspace;
#else
char workspace[MR_BIG_RESERVE(MR_SPACES)];
#endif

int TWIST; /* set to twisted curve */
int qnr;    /* a QNR -1 for p=3 mod 4, -2 for p=5 mod 8, 0 otherwise */
int cnr;    /* a cubic non-residue */
int pmod8;
int pmod9;
BOOL NO_CARRY;
} miracl;

/* ------------------------------------------------------------------------*/


#ifndef MR_GENERIC_MT

#ifdef MR_WINDOWS_MT
#define MR_OS_THREADS
#endif

#ifdef MR_UNIX_MT
#define MR_OS_THREADS
#endif

#ifdef MR_OPENMP_MT
#define MR_OS_THREADS
#endif


#ifndef MR_OS_THREADS

extern miracl *mr_mip;  /* pointer to MIRACL's only global variable */

#endif

#endif

#ifdef MR_GENERIC_MT

#ifdef MR_STATIC
#define MR_GENERIC_AND_STATIC
#endif

#define _MIPT_  miracl *,
#define _MIPTO_ miracl *
#define _MIPD_  miracl *mr_mip,
#define _MIPDO_ miracl *mr_mip
#define _MIPP_  mr_mip,
#define _MIPPO_ mr_mip

#else

#define _MIPT_    
#define _MIPTO_  void  
#define _MIPD_    
#define _MIPDO_  void  
#define _MIPP_    
#define _MIPPO_    

#endif

/* Preamble and exit code for MIRACL routines. *
 * Not used if MR_STRIPPED_DOWN is defined     */ 

#ifdef MR_STRIPPED_DOWN
#define MR_OUT
#define MR_IN(N)
#else
#define MR_OUT  mr_mip->depth--;        
#define MR_IN(N) mr_mip->depth++; if (mr_mip->depth<MR_MAXDEPTH) {mr_mip->trace[mr_mip->depth]=(N); if (mr_mip->TRACER) mr_track(_MIPPO_); }
#endif

/* Function definitions  */

/* Group 0 - Internal routines */

extern void  mr_berror(_MIPT_ int);
extern mr_small mr_shiftbits(mr_small,int);
extern mr_small mr_setbase(_MIPT_ mr_small);
extern void  mr_track(_MIPTO_ );
extern void  mr_lzero(big);
extern BOOL  mr_notint(flash);
extern int   mr_lent(flash);
extern void  mr_padd(_MIPT_ big,big,big);
extern void  mr_psub(_MIPT_ big,big,big);
extern void  mr_pmul(_MIPT_ big,mr_small,big);
#ifdef MR_FP_ROUNDING
extern mr_large mr_invert(mr_small);
extern mr_small imuldiv(mr_small,mr_small,mr_small,mr_small,mr_large,mr_small *);
extern mr_small mr_sdiv(_MIPT_ big,mr_small,mr_large,big);
#else
extern mr_small mr_sdiv(_MIPT_ big,mr_small,big);
extern void mr_and(big,big,big);
extern void mr_xor(big,big,big);
#endif
extern void  mr_shift(_MIPT_ big,int,big); 
extern miracl *mr_first_alloc(void);
extern void  *mr_alloc(_MIPT_ int,int);
extern void  mr_free(void *);  
extern void  set_user_function(_MIPT_ BOOL (*)(void));
extern void  set_io_buffer_size(_MIPT_ int);
extern int   mr_testbit(_MIPT_ big,int);
extern void  mr_addbit(_MIPT_ big,int);
extern int   recode(_MIPT_ big ,int ,int ,int );
extern int   mr_window(_MIPT_ big,int,int *,int *,int);
extern int   mr_window2(_MIPT_ big,big,int,int *,int *);
extern int   mr_naf_window(_MIPT_ big,big,int,int *,int *,int);

extern int   mr_fft_init(_MIPT_ int,big,big,BOOL);
extern void  mr_dif_fft(_MIPT_ int,int,mr_utype *);
extern void  mr_dit_fft(_MIPT_ int,int,mr_utype *);
extern void  fft_reset(_MIPTO_);

extern int   mr_poly_mul(_MIPT_ int,big*,int,big*,big*);
extern int   mr_poly_sqr(_MIPT_ int,big*,big*);
extern void  mr_polymod_set(_MIPT_ int,big*,big*);
extern int   mr_poly_rem(_MIPT_ int,big *,big *);

extern int   mr_ps_big_mul(_MIPT_ int,big *,big *,big *);
extern int   mr_ps_zzn_mul(_MIPT_ int,big *,big *,big *);

extern mr_small muldiv(mr_small,mr_small,mr_small,mr_small,mr_small *);
extern mr_small muldvm(mr_small,mr_small,mr_small,mr_small *); 
extern mr_small muldvd(mr_small,mr_small,mr_small,mr_small *); 
extern void     muldvd2(mr_small,mr_small,mr_small *,mr_small *); 

extern flash mirvar_mem_variable(char *,int,int);
extern epoint* epoint_init_mem_variable(_MIPT_ char *,int,int);

/* Group 1 - General purpose, I/O and basic arithmetic routines  */

extern unsigned int   igcd(unsigned int,unsigned int); 
extern unsigned long  lgcd(unsigned long,unsigned long); 
extern mr_small sgcd(mr_small,mr_small);
extern unsigned int   isqrt(unsigned int,unsigned int);
extern unsigned long  mr_lsqrt(unsigned long,unsigned long);
extern void  irand(_MIPT_ mr_unsign32);
extern mr_small brand(_MIPTO_ );       
extern void  zero(flash);
extern void  convert(_MIPT_ int,big);
extern void  uconvert(_MIPT_ unsigned int,big);
extern void  lgconv(_MIPT_ long,big);
extern void  ulgconv(_MIPT_ unsigned long,big);
extern void  tconvert(_MIPT_ mr_utype,big);

#ifdef mr_dltype
extern void  dlconv(_MIPT_ mr_dltype,big);
#endif

extern flash mirvar(_MIPT_ int);
extern flash mirvar_mem(_MIPT_ char *,int);
extern void  mirkill(big);
extern void  *memalloc(_MIPT_ int);
extern void  memkill(_MIPT_ char *,int);
extern void  mr_init_threading(void);
extern void  mr_end_threading(void);
extern miracl *get_mip(void );
extern void  set_mip(miracl *);
#ifdef MR_GENERIC_AND_STATIC
extern miracl *mirsys(miracl *,int,mr_small);
#else
extern miracl *mirsys(int,mr_small);
#endif
extern miracl *mirsys_basic(miracl *,int,mr_small);
extern void  mirexit(_MIPTO_ );
extern int   exsign(flash);
extern void  insign(int,flash);
extern int   getdig(_MIPT_ big,int);  
extern int   numdig(_MIPT_ big);        
extern void  putdig(_MIPT_ int,big,int);
extern void  copy(flash,flash);  
extern void  negify(flash,flash);
extern void  absol(flash,flash); 
extern int   size(big);
extern int   mr_compare(big,big);
extern void  add(_MIPT_ big,big,big);
extern void  subtract(_MIPT_ big,big,big);
extern void  incr(_MIPT_ big,int,big);    
extern void  decr(_MIPT_ big,int,big);    
extern void  premult(_MIPT_ big,int,big); 
extern int   subdiv(_MIPT_ big,int,big);  
extern BOOL  subdivisible(_MIPT_ big,int);
extern int   remain(_MIPT_ big,int);   
extern void  bytes_to_big(_MIPT_ int,const char *,big);
extern int   big_to_bytes(_MIPT_ int,big,char *,BOOL);
extern mr_small normalise(_MIPT_ big,big);
extern void  multiply(_MIPT_ big,big,big);
extern void  fft_mult(_MIPT_ big,big,big);
extern BOOL  fastmultop(_MIPT_ int,big,big,big);
extern void  divide(_MIPT_ big,big,big);  
extern BOOL  divisible(_MIPT_ big,big);   
extern void  mad(_MIPT_ big,big,big,big,big,big);
extern int   instr(_MIPT_ flash,char *);
extern int   otstr(_MIPT_ flash,char *);
extern int   cinstr(_MIPT_ flash,char *);
extern int   cotstr(_MIPT_ flash,char *);
extern epoint* epoint_init(_MIPTO_ );
extern epoint* epoint_init_mem(_MIPT_ char *,int);
extern void* ecp_memalloc(_MIPT_ int);
void ecp_memkill(_MIPT_ char *,int);
BOOL init_big_from_rom(big,int,const mr_small *,int ,int *);
BOOL init_point_from_rom(epoint *,int,const mr_small *,int,int *);

#ifndef MR_NO_FILE_IO

extern int   innum(_MIPT_ flash,FILE *);          
extern int   otnum(_MIPT_ flash,FILE *);
extern int   cinnum(_MIPT_ flash,FILE *);
extern int   cotnum(_MIPT_ flash,FILE *);

#endif

/* Group 2 - Advanced arithmetic routines */

extern mr_small smul(mr_small,mr_small,mr_small);
extern mr_small spmd(mr_small,mr_small,mr_small); 
extern mr_small invers(mr_small,mr_small);
extern mr_small sqrmp(mr_small,mr_small);
extern int      jac(mr_small,mr_small);

extern void  gprime(_MIPT_ int);
extern int   jack(_MIPT_ big,big);
extern int   egcd(_MIPT_ big,big,big);
extern int   xgcd(_MIPT_ big,big,big,big,big);
extern int   invmodp(_MIPT_ big,big,big);
extern int   logb2(_MIPT_ big);
extern int   hamming(_MIPT_ big);
extern void  expb2(_MIPT_ int,big);
extern void  bigbits(_MIPT_ int,big);
extern void  expint(_MIPT_ int,int,big);
extern void  sftbit(_MIPT_ big,int,big);
extern void  power(_MIPT_ big,long,big,big);
extern void  powmod(_MIPT_ big,big,big,big);
extern void  powmod2(_MIPT_ big,big,big,big,big,big);
extern void  powmodn(_MIPT_ int,big *,big *,big,big);
extern int   powltr(_MIPT_ int,big,big,big);
extern BOOL  double_inverse(_MIPT_ big,big,big,big,big);
extern BOOL  multi_inverse(_MIPT_ int,big*,big,big*);
extern void  lucas(_MIPT_ big,big,big,big,big);
extern BOOL  nroot(_MIPT_ big,int,big);
extern BOOL  sqroot(_MIPT_ big,big,big);
extern void  bigrand(_MIPT_ big,big);
extern void  bigdig(_MIPT_ int,int,big);
extern int   trial_division(_MIPT_ big,big);
extern BOOL  isprime(_MIPT_ big);
extern BOOL  nxprime(_MIPT_ big,big);
extern BOOL  nxsafeprime(_MIPT_ int,int,big,big);
extern BOOL  crt_init(_MIPT_ big_chinese *,int,big *);
extern void  crt(_MIPT_ big_chinese *,big *,big);
extern void  crt_end(big_chinese *);
extern BOOL  scrt_init(_MIPT_ small_chinese *,int,mr_utype *);    
extern void  scrt(_MIPT_ small_chinese*,mr_utype *,big); 
extern void  scrt_end(small_chinese *);
#ifndef MR_STATIC
extern BOOL  brick_init(_MIPT_ brick *,big,big,int,int);
extern void  brick_end(brick *);
#else
extern void  brick_init(brick *,const mr_small *,big,int,int);
#endif
extern void  pow_brick(_MIPT_ brick *,big,big);
#ifndef MR_STATIC
extern BOOL  ebrick_init(_MIPT_ ebrick *,big,big,big,big,big,int,int);
extern void  ebrick_end(ebrick *);
#else
extern void  ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
#endif
extern int   mul_brick(_MIPT_ ebrick*,big,big,big);
#ifndef MR_STATIC
extern BOOL  ebrick2_init(_MIPT_ ebrick2 *,big,big,big,big,int,int,int,int,int,int);
extern void  ebrick2_end(ebrick2 *);
#else
extern void  ebrick2_init(ebrick2 *,const mr_small *,big,big,int,int,int,int,int,int);
#endif
extern int   mul2_brick(_MIPT_ ebrick2*,big,big,big);

/* Montgomery stuff */

extern mr_small prepare_monty(_MIPT_ big);
extern void  kill_monty(_MIPTO_ );
extern void  nres(_MIPT_ big,big);        
extern void  redc(_MIPT_ big,big);        

extern void  nres_negate(_MIPT_ big,big);
extern void  nres_modadd(_MIPT_ big,big,big);  
extern void  nres_modsub(_MIPT_ big,big,big); 
extern void  nres_lazy(_MIPT_ big,big,big,big,big,big);
extern void  nres_complex(_MIPT_ big,big,big,big);
extern void  nres_double_modadd(_MIPT_ big,big,big);    
extern void  nres_double_modsub(_MIPT_ big,big,big); 
extern void  nres_premult(_MIPT_ big,int,big);
extern void  nres_modmult(_MIPT_ big,big,big);    
extern int   nres_moddiv(_MIPT_ big,big,big);     
extern void  nres_dotprod(_MIPT_ int,big *,big *,big);
extern void  nres_powmod(_MIPT_ big,big,big);     
extern void  nres_powltr(_MIPT_ int,big,big);     
extern void  nres_powmod2(_MIPT_ big,big,big,big,big);     
extern void  nres_powmodn(_MIPT_ int,big *,big *,big);
extern BOOL  nres_sqroot(_MIPT_ big,big);
extern void  nres_lucas(_MIPT_ big,big,big,big);
extern BOOL  nres_double_inverse(_MIPT_ big,big,big,big);
extern BOOL  nres_multi_inverse(_MIPT_ int,big *,big *);
extern void  nres_div2(_MIPT_ big,big);
extern void  nres_div3(_MIPT_ big,big);
extern void  nres_div5(_MIPT_ big,big);

extern void  shs_init(sha *);
extern void  shs_process(sha *,int);
extern void  shs_hash(sha *,char *);

extern void  shs256_init(sha256 *);
extern void  shs256_process(sha256 *,int);
extern void  shs256_hash(sha256 *,char *);

#ifdef mr_unsign64

extern void  shs512_init(sha512 *);
extern void  shs512_process(sha512 *,int);
extern void  shs512_hash(sha512 *,char *);

extern void  shs384_init(sha384 *);
extern void  shs384_process(sha384 *,int);
extern void  shs384_hash(sha384 *,char *);

extern void  sha3_init(sha3 *,int);
extern void  sha3_process(sha3 *,int);
extern void  sha3_hash(sha3 *,char *);

#endif

extern BOOL  aes_init(aes *,int,int,char *,char *);
extern void  aes_getreg(aes *,char *);
extern void  aes_ecb_encrypt(aes *,MR_BYTE *);
extern void  aes_ecb_decrypt(aes *,MR_BYTE *);
extern mr_unsign32 aes_encrypt(aes *,char *);
extern mr_unsign32 aes_decrypt(aes *,char *);
extern void  aes_reset(aes *,int,char *);
extern void  aes_end(aes *);

extern void  gcm_init(gcm *,int,char *,int,char *);
extern BOOL  gcm_add_header(gcm *,char *,int);
extern BOOL  gcm_add_cipher(gcm *,int,char *,int,char *);
extern void  gcm_finish(gcm *,char *);

extern void FPE_encrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
extern void FPE_decrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);

extern void  strong_init(csprng *,int,char *,mr_unsign32);   
extern int   strong_rng(csprng *);
extern void  strong_bigrand(_MIPT_ csprng *,big,big);
extern void  strong_bigdig(_MIPT_ csprng *,int,int,big);
extern void  strong_kill(csprng *);

/* special modular multipliers */

extern void  comba_mult(big,big,big);
extern void  comba_square(big,big);
extern void  comba_redc(_MIPT_ big,big);
extern void  comba_modadd(_MIPT_ big,big,big);
extern void  comba_modsub(_MIPT_ big,big,big);
extern void  comba_double_modadd(_MIPT_ big,big,big);
extern void  comba_double_modsub(_MIPT_ big,big,big);
extern void  comba_negate(_MIPT_ big,big);
extern void  comba_add(big,big,big);
extern void  comba_sub(big,big,big);
extern void  comba_double_add(big,big,big);
extern void  comba_double_sub(big,big,big);

extern void  comba_mult2(_MIPT_ big,big,big);

extern void  fastmodmult(_MIPT_ big,big,big);
extern void  fastmodsquare(_MIPT_ big,big);   

extern void  kcm_mul(_MIPT_ big,big,big);
extern void  kcm_sqr(_MIPT_ big,big); 
extern void  kcm_redc(_MIPT_ big,big); 

extern void  kcm_multiply(_MIPT_ int,big,big,big);
extern void  kcm_square(_MIPT_ int,big,big);
extern BOOL  kcm_top(_MIPT_ int,big,big,big);

/* elliptic curve stuff */

extern BOOL point_at_infinity(epoint *);

extern void mr_jsf(_MIPT_ big,big,big,big,big,big);

extern void ecurve_init(_MIPT_ big,big,big,int);
extern int  ecurve_add(_MIPT_ epoint *,epoint *);
extern int  ecurve_sub(_MIPT_ epoint *,epoint *);
extern void ecurve_double_add(_MIPT_ epoint *,epoint *,epoint *,epoint *,big *,big *);
extern void ecurve_multi_add(_MIPT_ int,epoint **,epoint **);
extern void ecurve_double(_MIPT_ epoint*);
extern int  ecurve_mult(_MIPT_ big,epoint *,epoint *);
extern void ecurve_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
extern void ecurve_multn(_MIPT_ int,big *,epoint**,epoint *);

extern BOOL epoint_x(_MIPT_ big);
extern BOOL epoint_set(_MIPT_ big,big,int,epoint*);
extern int  epoint_get(_MIPT_ epoint*,big,big);
extern void epoint_getxyz(_MIPT_ epoint *,big,big,big);
extern BOOL epoint_norm(_MIPT_ epoint *);
extern BOOL epoint_multi_norm(_MIPT_ int,big *,epoint **);  
extern void epoint_free(epoint *);
extern void epoint_copy(epoint *,epoint *);
extern BOOL epoint_comp(_MIPT_ epoint *,epoint *);
extern void epoint_negate(_MIPT_ epoint *);

extern BOOL ecurve2_init(_MIPT_ int,int,int,int,big,big,BOOL,int);
extern big  ecurve2_add(_MIPT_ epoint *,epoint *);
extern big  ecurve2_sub(_MIPT_ epoint *,epoint *);
extern void ecurve2_multi_add(_MIPT_ int,epoint **,epoint **);
extern void ecurve2_mult(_MIPT_ big,epoint *,epoint *);
extern void ecurve2_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
extern void ecurve2_multn(_MIPT_ int,big *,epoint**,epoint *);

extern epoint* epoint2_init(_MIPTO_ );
extern BOOL epoint2_set(_MIPT_ big,big,int,epoint*);
extern int  epoint2_get(_MIPT_ epoint*,big,big);
extern void epoint2_getxyz(_MIPT_ epoint *,big,big,big);
extern int  epoint2_norm(_MIPT_ epoint *);
extern void epoint2_free(epoint *);
extern void epoint2_copy(epoint *,epoint *);
extern BOOL epoint2_comp(_MIPT_ epoint *,epoint *);
extern void epoint2_negate(_MIPT_ epoint *);

/* GF(2) stuff */

extern BOOL prepare_basis(_MIPT_ int,int,int,int,BOOL);
extern int parity2(big);
extern BOOL multi_inverse2(_MIPT_ int,big *,big *);
extern void add2(big,big,big);
extern void incr2(big,int,big);
extern void reduce2(_MIPT_ big,big);
extern void multiply2(_MIPT_ big,big,big);
extern void modmult2(_MIPT_ big,big,big);
extern void modsquare2(_MIPT_ big,big);
extern void power2(_MIPT_ big,int,big);
extern void sqroot2(_MIPT_ big,big);
extern void halftrace2(_MIPT_ big,big);
extern BOOL quad2(_MIPT_ big,big);
extern BOOL inverse2(_MIPT_ big,big);
extern void karmul2(int,mr_small *,mr_small *,mr_small *,mr_small *);
extern void karmul2_poly(_MIPT_ int,big *,big *,big *,big *);
extern void karmul2_poly_upper(_MIPT_ int,big *,big *,big *,big *);
extern void gf2m_dotprod(_MIPT_ int,big *,big *,big);
extern int  trace2(_MIPT_ big);
extern void rand2(_MIPT_ big);
extern void gcd2(_MIPT_ big,big,big);
extern int degree2(big);

/* zzn2 stuff */

extern BOOL zzn2_iszero(zzn2 *);
extern BOOL zzn2_isunity(_MIPT_ zzn2 *);
extern void zzn2_from_int(_MIPT_ int,zzn2 *);
extern void zzn2_from_ints(_MIPT_ int,int,zzn2 *);
extern void zzn2_copy(zzn2 *,zzn2 *);
extern void zzn2_zero(zzn2 *);
extern void zzn2_negate(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_conj(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_add(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_sub(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_smul(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_mul(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_sqr(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_inv(_MIPT_ zzn2 *);
extern void zzn2_timesi(_MIPT_ zzn2 *);
extern void zzn2_powl(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_from_zzns(big,big,zzn2 *);
extern void zzn2_from_bigs(_MIPT_ big,big,zzn2 *);
extern void zzn2_from_zzn(big,zzn2 *);
extern void zzn2_from_big(_MIPT_ big, zzn2 *);
extern void zzn2_sadd(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_ssub(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_div2(_MIPT_ zzn2 *);
extern void zzn2_div3(_MIPT_ zzn2 *);
extern void zzn2_div5(_MIPT_ zzn2 *);
extern void zzn2_imul(_MIPT_ zzn2 *,int,zzn2 *);
extern BOOL zzn2_compare(zzn2 *,zzn2 *);
extern void zzn2_txx(_MIPT_ zzn2 *);
extern void zzn2_txd(_MIPT_ zzn2 *);
extern BOOL zzn2_sqrt(_MIPT_ zzn2 *,zzn2 *);
extern BOOL zzn2_qr(_MIPT_ zzn2 *);
extern BOOL zzn2_multi_inverse(_MIPT_ int,zzn2 *,zzn2 *);


/* zzn3 stuff */

extern void zzn3_set(_MIPT_ int,big);
extern BOOL zzn3_iszero(zzn3 *);
extern BOOL zzn3_isunity(_MIPT_ zzn3 *);
extern void zzn3_from_int(_MIPT_ int,zzn3 *);
extern void zzn3_from_ints(_MIPT_ int,int,int,zzn3 *);
extern void zzn3_copy(zzn3 *,zzn3 *);
extern void zzn3_zero(zzn3 *);
extern void zzn3_negate(_MIPT_ zzn3 *,zzn3 *);
extern void zzn3_powq(_MIPT_ zzn3 *,zzn3 *);
extern void zzn3_add(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_sub(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_smul(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_mul(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_inv(_MIPT_ zzn3 *);
extern void zzn3_timesi(_MIPT_ zzn3 *);
extern void zzn3_timesi2(_MIPT_ zzn3 *);
extern void zzn3_powl(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_from_zzns(big,big,big,zzn3 *);
extern void zzn3_from_bigs(_MIPT_ big,big,big,zzn3 *);
extern void zzn3_from_zzn(big,zzn3 *);
extern void zzn3_from_zzn_1(big,zzn3 *);
extern void zzn3_from_zzn_2(big,zzn3 *);
extern void zzn3_from_big(_MIPT_ big, zzn3 *);
extern void zzn3_sadd(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_ssub(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_div2(_MIPT_ zzn3 *);
extern void zzn3_imul(_MIPT_ zzn3 *,int,zzn3 *);
extern BOOL zzn3_compare(zzn3 *,zzn3 *);

/* zzn4 stuff */

extern BOOL zzn4_iszero(zzn4 *);
extern BOOL zzn4_isunity(_MIPT_ zzn4 *);
extern void zzn4_from_int(_MIPT_ int,zzn4 *);
extern void zzn4_copy(zzn4 *,zzn4 *);
extern void zzn4_zero(zzn4 *);
extern void zzn4_negate(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_powq(_MIPT_ zzn2 *,zzn4 *);
extern void zzn4_add(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_sub(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_smul(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_sqr(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_mul(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_inv(_MIPT_ zzn4 *);
extern void zzn4_timesi(_MIPT_ zzn4 *);
extern void zzn4_tx(_MIPT_ zzn4 *);
extern void zzn4_from_zzn2s(zzn2 *,zzn2 *,zzn4 *);
extern void zzn4_from_zzn2(zzn2 *,zzn4 *);
extern void zzn4_from_zzn2h(zzn2 *,zzn4 *);
extern void zzn4_from_zzn(big,zzn4 *);
extern void zzn4_from_big(_MIPT_ big , zzn4 *);
extern void zzn4_sadd(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_ssub(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_div2(_MIPT_ zzn4 *);
extern void zzn4_conj(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_imul(_MIPT_ zzn4 *,int,zzn4 *);
extern void zzn4_lmul(_MIPT_ zzn4 *,big,zzn4 *);
extern BOOL zzn4_compare(zzn4 *,zzn4 *);

/* ecn2 stuff */

extern BOOL ecn2_iszero(ecn2 *);
extern void ecn2_copy(ecn2 *,ecn2 *);
extern void ecn2_zero(ecn2 *);
extern BOOL ecn2_compare(_MIPT_ ecn2 *,ecn2 *);
extern void ecn2_norm(_MIPT_ ecn2 *);
extern void ecn2_get(_MIPT_ ecn2 *,zzn2 *,zzn2 *,zzn2 *);
extern void ecn2_getxy(ecn2 *,zzn2 *,zzn2 *);
extern void ecn2_getx(ecn2 *,zzn2 *);
extern void ecn2_getz(_MIPT_ ecn2 *,zzn2 *);
extern void ecn2_rhs(_MIPT_ zzn2 *,zzn2 *);
extern BOOL ecn2_set(_MIPT_ zzn2 *,zzn2 *,ecn2 *);
extern BOOL ecn2_setx(_MIPT_ zzn2 *,ecn2 *);
extern void ecn2_setxyz(_MIPT_ zzn2 *,zzn2 *,zzn2 *,ecn2 *);
extern void ecn2_negate(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_add3(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *,zzn2 *);
extern BOOL ecn2_add2(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *);
extern BOOL ecn2_add1(_MIPT_ ecn2 *,ecn2 *,zzn2 *);
extern BOOL ecn2_add(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_sub(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_add_sub(_MIPT_ ecn2 *,ecn2 *,ecn2 *,ecn2 *);
extern int ecn2_mul2_jsf(_MIPT_ big,ecn2 *,big,ecn2 *,ecn2 *);
extern int ecn2_mul(_MIPT_ big,ecn2 *);
extern void ecn2_psi(_MIPT_ zzn2 *,ecn2 *);
extern BOOL ecn2_multi_norm(_MIPT_ int ,zzn2 *,ecn2 *);
extern int ecn2_mul4_gls_v(_MIPT_ big *,int,ecn2 *,big *,ecn2 *,zzn2 *,ecn2 *);
extern int ecn2_muln_engine(_MIPT_ int,int,int,int,big *,big *,big *,big *,ecn2 *,ecn2 *,ecn2 *);
extern void ecn2_precomp_gls(_MIPT_ int,BOOL,ecn2 *,zzn2 *,ecn2 *);
extern int ecn2_mul2_gls(_MIPT_ big *,ecn2 *,zzn2 *,ecn2 *);
extern void ecn2_precomp(_MIPT_ int,BOOL,ecn2 *,ecn2 *);
extern int ecn2_mul2(_MIPT_ big,int,ecn2 *,big,ecn2 *,ecn2 *);
#ifndef MR_STATIC
extern BOOL ecn2_brick_init(_MIPT_ ebrick *,zzn2 *,zzn2 *,big,big,big,int,int);
extern void ecn2_brick_end(ebrick *);
#else
extern void ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
#endif
extern void ecn2_mul_brick_gls(_MIPT_ ebrick *B,big *,zzn2 *,zzn2 *,zzn2 *);
extern void ecn2_multn(_MIPT_ int,big *,ecn2 *,ecn2 *);
extern void ecn2_mult4(_MIPT_ big *,ecn2 *,ecn2 *);
/* Group 3 - Floating-slash routines      */

#ifdef MR_FLASH
extern void  fpack(_MIPT_ big,big,flash);
extern void  numer(_MIPT_ flash,big);    
extern void  denom(_MIPT_ flash,big);    
extern BOOL  fit(big,big,int);    
extern void  build(_MIPT_ flash,int (*)(_MIPT_ big,int));
extern void  mround(_MIPT_ big,big,flash);         
extern void  flop(_MIPT_ flash,flash,int *,flash);
extern void  fmul(_MIPT_ flash,flash,flash);      
extern void  fdiv(_MIPT_ flash,flash,flash);      
extern void  fadd(_MIPT_ flash,flash,flash);      
extern void  fsub(_MIPT_ flash,flash,flash);      
extern int   fcomp(_MIPT_ flash,flash);           
extern void  fconv(_MIPT_ int,int,flash);         
extern void  frecip(_MIPT_ flash,flash);          
extern void  ftrunc(_MIPT_ flash,big,flash);      
extern void  fmodulo(_MIPT_ flash,flash,flash);
extern void  fpmul(_MIPT_ flash,int,int,flash);   
extern void  fincr(_MIPT_ flash,int,int,flash);   
extern void  dconv(_MIPT_ double,flash);          
extern double fdsize(_MIPT_ flash);
extern void  frand(_MIPT_ flash);

/* Group 4 - Advanced Flash routines */ 

extern void  fpower(_MIPT_ flash,int,flash);
extern BOOL  froot(_MIPT_ flash,int,flash); 
extern void  fpi(_MIPT_ flash);             
extern void  fexp(_MIPT_ flash,flash);      
extern void  flog(_MIPT_ flash,flash);      
extern void  fpowf(_MIPT_ flash,flash,flash);
extern void  ftan(_MIPT_ flash,flash); 
extern void  fatan(_MIPT_ flash,flash);
extern void  fsin(_MIPT_ flash,flash); 
extern void  fasin(_MIPT_ flash,flash);
extern void  fcos(_MIPT_ flash,flash);  
extern void  facos(_MIPT_ flash,flash); 
extern void  ftanh(_MIPT_ flash,flash); 
extern void  fatanh(_MIPT_ flash,flash);
extern void  fsinh(_MIPT_ flash,flash); 
extern void  fasinh(_MIPT_ flash,flash);
extern void  fcosh(_MIPT_ flash,flash); 
extern void  facosh(_MIPT_ flash,flash);
#endif


/* Test predefined Macros to determine compiler type, and hopefully 
   selectively use fast in-line assembler (or other compiler specific
   optimisations. Note I am unsure of Microsoft version numbers. So I 
   suspect are Microsoft.

   Note: It seems to be impossible to get the 16-bit Microsoft compiler
   to allow inline 32-bit op-codes. So I suspect that INLINE_ASM == 2 will
   never work with it. Pity. 

#define INLINE_ASM 1    -> generates 8086 inline assembly
#define INLINE_ASM 2    -> generates mixed 8086 & 80386 inline assembly,
                           so you can get some benefit while running in a 
                           16-bit environment on 32-bit hardware (DOS, Windows
                           3.1...)
#define INLINE_ASM 3    -> generate true 80386 inline assembly - (Using DOS 
                           extender, Windows '95/Windows NT)
                           Actually optimised for Pentium

#define INLINE_ASM 4    -> 80386 code in the GNU style (for (DJGPP)

Small, medium, compact and large memory models are supported for the
first two of the above.
                        
*/

/* To allow for inline assembly */

#ifdef __GNUC__ 
    #define ASM __asm__ __volatile__
#endif

#ifdef __TURBOC__ 
    #define ASM asm
#endif

#ifdef _MSC_VER
    #define ASM _asm
#endif

#ifndef MR_NOASM

/* Win64 - inline the time critical function */
#ifndef MR_NO_INTRINSICS
	#ifdef MR_WIN64
		#define muldvd(a,b,c,rp) (*(rp)=_umul128((a),(b),&(tm)),*(rp)+=(c),tm+=(*(rp)<(c)),tm)
		#define muldvd2(a,b,c,rp) (tr=_umul128((a),(b),&(tm)),tr+=(*(c)),tm+=(tr<(*(c))),tr+=(*(rp)),tm+=(tr<(*(rp))),*(rp)=tr,*(c)=tm)
	#endif

/* Itanium - inline the time-critical functions */

    #ifdef MR_ITANIUM
        #define muldvd(a,b,c,rp)  (tm=_m64_xmahu((a),(b),(c)),*(rp)=_m64_xmalu((a),(b),(c)),tm)
        #define muldvd2(a,b,c,rp) (tm=_m64_xmalu((a),(b),(*(c))),*(c)=_m64_xmahu((a),(b),(*(c))),tm+=*(rp),*(c)+=(tm<*(rp)),*(rp)=tm)
    #endif
#endif
/*

SSE2 code. Works as for itanium - but in fact it is slower than the regular code so not recommended
Would require a call to emmintrin.h or xmmintrin.h, and an __m128i variable tm to be declared in effected 
functions. But it works!

	#define muldvd(a,b,c,rp)  (tm=_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128((c))),*(rp)=_mm_cvtsi128_si32(tm),_mm_cvtsi128_si32(_mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))) )
	#define muldvd2(a,b,c,rp) (tm=_mm_add_epi64(_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128(*(c))),_mm_cvtsi32_si128(*(rp))),*(rp)=_mm_cvtsi128_si32(tm),*(c)=_mm_cvtsi128_si32( _mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))  )
*/

/* Borland C/Turbo C */

    #ifdef __TURBOC__ 
    #ifndef __HUGE__
        #if defined(__COMPACT__) || defined(__LARGE__)
            #define MR_LMM
        #endif

        #if MIRACL==16
            #define INLINE_ASM 1
        #endif

        #if __TURBOC__>=0x410
            #if MIRACL==32
#if defined(__SMALL__) || defined(__MEDIUM__) || defined(__LARGE__) || defined(__COMPACT__)
                    #define INLINE_ASM 2
                #else
                    #define INLINE_ASM 3
                #endif
            #endif
        #endif
    #endif
    #endif

/* Microsoft C */

    #ifdef _MSC_VER
    #ifndef M_I86HM        
        #if defined(M_I86CM) || defined(M_I86LM)
            #define MR_LMM
        #endif
        #if _MSC_VER>=600
            #if _MSC_VER<1200
                #if MIRACL==16
                    #define INLINE_ASM 1
                #endif
            #endif
        #endif
        #if _MSC_VER>=1000
			#if _MSC_VER<1500
				#if MIRACL==32
					#define INLINE_ASM 3
				#endif
			#endif
        #endif     
    #endif       
    #endif

/* DJGPP GNU C */

    #ifdef __GNUC__
    #ifdef i386
        #if MIRACL==32
            #define INLINE_ASM 4
        #endif
    #endif
    #endif

#endif



/* 
   The following contribution is from Tielo Jongmans, Netherlands
   These inline assembler routines are suitable for Watcom 10.0 and up 

   Added into miracl.h.  Notice the override of the original declarations 
   of these routines, which should be removed.

   The following pragma is optional, it is dangerous, but it saves a 
   calling sequence
*/

/*

#pragma off (check_stack);

extern unsigned int muldiv(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldiv=                 \
       "mul     edx"                \
       "add     eax,ebx"            \
       "adc     edx,0"              \
       "div     ecx"                \
       "mov     [esi],edx"          \
    parm [eax] [edx] [ebx] [ecx] [esi]   \
    value [eax]                     \
    modify [eax edx];

extern unsigned int muldvm(unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldvm=                 \
        "div     ebx"               \
        "mov     [ecx],edx"         \
    parm [edx] [eax] [ebx] [ecx]    \
    value [eax]                     \
    modify [eax edx];

extern unsigned int muldvd(unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldvd=                 \
        "mul     edx"               \
        "add     eax,ebx"           \
        "adc     edx,0"             \
        "mov     [ecx],eax"         \
        "mov     eax,edx"           \
    parm [eax] [edx] [ebx] [ecx]    \
    value [eax]                     \
    modify [eax edx];

*/


#endif


fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat miracl.h
/***************************************************************************
                                                                           *
Copyright 2013 CertiVox UK Ltd.                                           *
                                                                           *
This file is part of CertiVox MIRACL Crypto SDK.                           *
                                                                           *
The CertiVox MIRACL Crypto SDK provides developers with an                 *
extensive and efficient set of cryptographic functions.                    *
For further information about its features and functionalities please      *
refer to http://www.certivox.com                                           *
                                                                           *
* The CertiVox MIRACL Crypto SDK is free software: you can                 *
  redistribute it and/or modify it under the terms of the                  *
  GNU Affero General Public License as published by the                    *
  Free Software Foundation, either version 3 of the License,               *
  or (at your option) any later version.                                   *
                                                                           *
* The CertiVox MIRACL Crypto SDK is distributed in the hope                *
  that it will be useful, but WITHOUT ANY WARRANTY; without even the       *
  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
  See the GNU Affero General Public License for more details.              *
                                                                           *
* You should have received a copy of the GNU Affero General Public         *
  License along with CertiVox MIRACL Crypto SDK.                           *
  If not, see <http://www.gnu.org/licenses/>.                              *
                                                                           *
You can be released from the requirements of the license by purchasing     *
a commercial license. Buying such a license is mandatory as soon as you    *
develop commercial activities involving the CertiVox MIRACL Crypto SDK     *
without disclosing the source code of your own applications, or shipping   *
the CertiVox MIRACL Crypto SDK with a closed source product.               *
                                                                           *
***************************************************************************/

#ifndef MIRACL_H
#define MIRACL_H

/*
 *   main MIRACL header - miracl.h.
 */

#include "mirdef.h"

/* Some modifiable defaults... */

/* Use a smaller buffer if space is limited, don't be so wasteful! */

#ifdef MR_STATIC
#define MR_DEFAULT_BUFFER_SIZE 260
#else
#define MR_DEFAULT_BUFFER_SIZE 1024
#endif

/* see mrgf2m.c */

#ifndef MR_KARATSUBA
#define MR_KARATSUBA 2
#endif

#ifndef MR_DOUBLE_BIG

#ifdef MR_KCM
  #ifdef MR_FLASH
    #define MR_SPACES 32
  #else
    #define MR_SPACES 31
  #endif
#else
  #ifdef MR_FLASH
    #define MR_SPACES 28
  #else
    #define MR_SPACES 27
  #endif
#endif

#else

#ifdef MR_KCM
  #ifdef MR_FLASH
    #define MR_SPACES 44
  #else
    #define MR_SPACES 43
  #endif
#else
  #ifdef MR_FLASH
    #define MR_SPACES 40
  #else
    #define MR_SPACES 39
  #endif
#endif

#endif

/* To avoid name clashes - undefine this */

/* #define compare mr_compare */

#ifdef MR_AVR
#include <avr/pgmspace.h>
#endif

/* size of bigs and elliptic curve points for memory allocation from stack or heap */

#define MR_ROUNDUP(a,b) ((a)-1)/(b)+1

#define MR_SL sizeof(long)

#ifdef MR_STATIC

#define MR_SIZE (((sizeof(struct bigtype)+(MR_STATIC+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
#define MR_BIG_RESERVE(n) ((n)*MR_SIZE+MR_SL)

#ifdef MR_AFFINE_ONLY
#define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
#else
#define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(3))-1)/MR_SL+1)*MR_SL
#endif
#define MR_ECP_RESERVE(n) ((n)*MR_ESIZE+MR_SL)

#define MR_ESIZE_A (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
#define MR_ECP_RESERVE_A(n) ((n)*MR_ESIZE_A+MR_SL)


#endif

/* useful macro to convert size of big in words, to size of required structure */

#define mr_size(n) (((sizeof(struct bigtype)+((n)+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
#define mr_big_reserve(n,m) ((n)*mr_size(m)+MR_SL)

#define mr_esize_a(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
#define mr_ecp_reserve_a(n,m) ((n)*mr_esize_a(m)+MR_SL)

#ifdef MR_AFFINE_ONLY
#define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
#else
#define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(3,(n)))-1)/MR_SL+1)*MR_SL 
#endif
#define mr_ecp_reserve(n,m) ((n)*mr_esize(m)+MR_SL)


/* if basic library is static, make sure and use static C++ */

#ifdef MR_STATIC
 #ifndef BIGS
  #define BIGS MR_STATIC
 #endif
 #ifndef ZZNS
  #define ZZNS MR_STATIC
 #endif
 #ifndef GF2MS
  #define GF2MS MR_STATIC
 #endif
#endif

#ifdef __ia64__
#if MIRACL==64
#define MR_ITANIUM
#include <ia64intrin.h>
#endif
#endif

#ifdef _M_X64
#ifdef _WIN64
#if MIRACL==64
#define MR_WIN64
#include <intrin.h>
#endif
#endif
#endif

#ifndef MR_NO_FILE_IO
#include <stdio.h>
#endif
               /* error returns */

#define MR_ERR_BASE_TOO_BIG       1
#define MR_ERR_DIV_BY_ZERO        2
#define MR_ERR_OVERFLOW           3
#define MR_ERR_NEG_RESULT         4
#define MR_ERR_BAD_FORMAT         5
#define MR_ERR_BAD_BASE           6
#define MR_ERR_BAD_PARAMETERS     7
#define MR_ERR_OUT_OF_MEMORY      8
#define MR_ERR_NEG_ROOT           9
#define MR_ERR_NEG_POWER         10
#define MR_ERR_BAD_ROOT          11
#define MR_ERR_INT_OP            12
#define MR_ERR_FLASH_OVERFLOW    13
#define MR_ERR_TOO_BIG           14
#define MR_ERR_NEG_LOG           15
#define MR_ERR_DOUBLE_FAIL       16
#define MR_ERR_IO_OVERFLOW       17
#define MR_ERR_NO_MIRSYS         18
#define MR_ERR_BAD_MODULUS       19
#define MR_ERR_NO_MODULUS        20
#define MR_ERR_EXP_TOO_BIG       21
#define MR_ERR_NOT_SUPPORTED     22
#define MR_ERR_NOT_DOUBLE_LEN    23
#define MR_ERR_NOT_IRREDUC       24
#define MR_ERR_NO_ROUNDING       25
#define MR_ERR_NOT_BINARY        26
#define MR_ERR_NO_BASIS          27
#define MR_ERR_COMPOSITE_MODULUS 28
#define MR_ERR_DEV_RANDOM        29

               /* some useful definitions */

#define forever for(;;)   

#define mr_abs(x)  ((x)<0? (-(x)) : (x))

#ifndef TRUE
  #define TRUE 1
#endif
#ifndef FALSE
  #define FALSE 0
#endif

#define OFF 0
#define ON 1
#define PLUS 1
#define MINUS (-1)

#define M1 (MIRACL-1)
#define M2 (MIRACL-2)
#define M3 (MIRACL-3)
#define M4 (MIRACL-4)
#define TOPBIT ((mr_small)1<<M1)
#define SECBIT ((mr_small)1<<M2)
#define THDBIT ((mr_small)1<<M3)
#define M8 (MIRACL-8)

#define MR_MAXDEPTH 24
                              /* max routine stack depth */
/* big and flash variables consist of an encoded length, *
 * and an array of mr_smalls containing the digits       */

#ifdef MR_COUNT_OPS
extern int fpm2,fpi2,fpc,fpa,fpx;
#endif

typedef int BOOL;

#define MR_BYTE unsigned char

#ifdef MR_BITSINCHAR
 #if MR_BITSINCHAR == 8
  #define MR_TOBYTE(x) ((MR_BYTE)(x))
 #else
  #define MR_TOBYTE(x) ((MR_BYTE)((x)&0xFF))
 #endif
#else
 #define MR_TOBYTE(x) ((MR_BYTE)(x))
#endif

#ifdef MR_FP

  typedef mr_utype mr_small;
  #ifdef mr_dltype
  typedef mr_dltype mr_large;
  #endif

  #define MR_DIV(a,b)    (modf((a)/(b),&dres),dres)

  #ifdef MR_FP_ROUNDING

/* slightly dicey - for example the optimizer might remove the MAGIC ! */

    #define MR_LROUND(a)   ( ( (a) + MR_MAGIC ) - MR_MAGIC )
  #else
    #define MR_LROUND(a)   (modfl((a),&ldres),ldres)
  #endif

  #define MR_REMAIN(a,b) ((a)-(b)*MR_DIV((a),(b)))

#else

  typedef unsigned mr_utype mr_small;
  #ifdef mr_dltype
    typedef unsigned mr_dltype mr_large;
  #endif
  #ifdef mr_qltype
    typedef unsigned mr_qltype mr_vlarge;
  #endif

  #define MR_DIV(a,b)    ((a)/(b))
  #define MR_REMAIN(a,b) ((a)%(b))
  #define MR_LROUND(a)   ((a))
#endif


/* It might be wanted to change this to unsigned long */

typedef unsigned int mr_lentype;

struct bigtype
{
    mr_lentype len;
    mr_small *w;
};                

typedef struct bigtype *big;
typedef big zzn;

typedef big flash;

#define MR_MSBIT ((mr_lentype)1<<(MR_IBITS-1))

#define MR_OBITS (MR_MSBIT-1)

#if MIRACL >= MR_IBITS
#define MR_TOOBIG (1<<(MR_IBITS-2))
#else
#define MR_TOOBIG (1<<(MIRACL-1))
#endif

#ifdef  MR_FLASH
#define MR_EBITS (8*sizeof(double) - MR_FLASH)
                                  /* no of Bits per double exponent */
#define MR_BTS 16
#define MR_MSK 0xFFFF

#endif

/* Default Hash function output size in bytes */
#define MR_HASH_BYTES     32

/* Marsaglia & Zaman Random number generator */
/*         constants      alternatives       */
#define NK   37           /* 21 */
#define NJ   24           /*  6 */
#define NV   14           /*  8 */

/* Use smaller values if memory is precious */

#ifdef mr_dltype

#ifdef MR_LITTLE_ENDIAN 
#define MR_BOT 0
#define MR_TOP 1
#endif
#ifdef MR_BIG_ENDIAN
#define MR_BOT 1
#define MR_TOP 0
#endif

union doubleword
{
    mr_large d;
    mr_small h[2];
};

#endif

/* chinese remainder theorem structures */

typedef struct {
big *C;
big *V;
big *M;
int NP;
} big_chinese;

typedef struct {
mr_utype *C;
mr_utype *V;
mr_utype *M;
int NP;
} small_chinese;

/* Cryptographically strong pseudo-random number generator */

typedef struct {
mr_unsign32 ira[NK];  /* random number...   */
int         rndptr;   /* ...array & pointer */
mr_unsign32 borrow;
int pool_ptr;
char pool[MR_HASH_BYTES];    /* random pool */
} csprng;

/* secure hash Algorithm structure */

typedef struct {
mr_unsign32 length[2];
mr_unsign32 h[8];
mr_unsign32 w[80];
} sha256;

typedef sha256 sha;

#ifdef mr_unsign64

typedef struct {
mr_unsign64 length[2];
mr_unsign64 h[8];
mr_unsign64 w[80];
} sha512;

typedef sha512 sha384;

typedef struct {
mr_unsign64 length;
mr_unsign64 S[5][5];
int rate,len;
} sha3;

#endif

/* Symmetric Encryption algorithm structure */

#define MR_ECB   0
#define MR_CBC   1
#define MR_CFB1  2
#define MR_CFB2  3
#define MR_CFB4  5
#define MR_PCFB1 10
#define MR_PCFB2 11
#define MR_PCFB4 13
#define MR_OFB1  14
#define MR_OFB2  15
#define MR_OFB4  17
#define MR_OFB8  21
#define MR_OFB16 29

typedef struct {
int Nk,Nr;
int mode;
mr_unsign32 fkey[60];
mr_unsign32 rkey[60];
char f[16];
} aes;

/* AES-GCM suppport. See mrgcm.c */

#define GCM_ACCEPTING_HEADER 0
#define GCM_ACCEPTING_CIPHER 1
#define GCM_NOT_ACCEPTING_MORE 2
#define GCM_FINISHED 3
#define GCM_ENCRYPTING 0
#define GCM_DECRYPTING 1

typedef struct {
mr_unsign32 table[128][4]; /* 2k bytes */
MR_BYTE stateX[16];
MR_BYTE Y_0[16];
mr_unsign32 counter;
mr_unsign32 lenA[2],lenC[2];
int status;
aes a;
} gcm;

               /* Elliptic curve point status */

#define MR_EPOINT_GENERAL    0
#define MR_EPOINT_NORMALIZED 1
#define MR_EPOINT_INFINITY   2

#define MR_NOTSET     0
#define MR_PROJECTIVE 0
#define MR_AFFINE     1
#define MR_BEST       2
#define MR_TWIST      8

#define MR_OVER       0
#define MR_ADD        1
#define MR_DOUBLE     2

/* Twist type */

#define MR_QUADRATIC 2
#define MR_CUBIC_M   0x3A
#define MR_CUBIC_D   0x3B
#define MR_QUARTIC_M 0x4A
#define MR_QUARTIC_D 0x4B
#define MR_SEXTIC_M  0x6A
#define MR_SEXTIC_D  0x6B


/* Fractional Sliding Windows for ECC - how much precomputation storage to use ? */
/* Note that for variable point multiplication there is an optimal value 
   which can be reduced if space is short. For fixed points its a matter of 
   how much ROM is available to store precomputed points.
   We are storing the k points (P,3P,5P,7P,...,[2k-1].P) */

/* These values can be manually tuned for optimal performance... */

#ifdef MR_SMALL_EWINDOW
#define MR_ECC_STORE_N  3   /* point store for ecn  variable point multiplication */
#define MR_ECC_STORE_2M 3   /* point store for ec2m variable point multiplication */
#define MR_ECC_STORE_N2 3   /* point store for ecn2 variable point multiplication */
#else
#define MR_ECC_STORE_N  8   /* 8/9 is close to optimal for 256 bit exponents */
#define MR_ECC_STORE_2M 9   
#define MR_ECC_STORE_N2 8   
#endif

/*#define MR_ECC_STORE_N2_PRECOMP MR_ECC_STORE_N2 */
                            /* Might want to make this bigger.. */

/* If multi-addition is of m points, and s precomputed values are required, this is max of m*s (=4.10?) */
#define MR_MAX_M_T_S 64

/* Elliptic Curve epoint structure. Uses projective (X,Y,Z) co-ordinates */

typedef struct {
int marker;
big X;
big Y;
#ifndef MR_AFFINE_ONLY
big Z;
#endif
} epoint;


/* Structure for Comb method for finite *
   field exponentiation with precomputation */

typedef struct {
#ifdef MR_STATIC
    const mr_small *table;
#else
    mr_small *table;
#endif
    big n; 
    int window;
    int max;
} brick;

/* Structure for Comb method for elliptic *
   curve exponentiation with precomputation  */

typedef struct {
#ifdef MR_STATIC
    const mr_small *table; 
#else
    mr_small *table;
#endif
    big a,b,n;
    int window;
    int max;
} ebrick;

typedef struct {
#ifdef MR_STATIC
    const mr_small *table;
#else
    mr_small *table;
#endif
    big a6,a2;
    int m,a,b,c;
    int window;
    int max;
} ebrick2;

typedef struct
{
    big a;
    big b;
} zzn2;

typedef struct
{
    zzn2 a;
    zzn2 b;
    BOOL unitary;
} zzn4;

typedef struct 
{
    int marker;
    zzn2 x;
    zzn2 y;
#ifndef MR_AFFINE_ONLY
    zzn2 z;
#endif

} ecn2;

typedef struct
{
    big a;
    big b;
    big c;
} zzn3;

typedef struct
{
	zzn2 a;
	zzn2 b;
	zzn2 c;
} zzn6_3x2;

/* main MIRACL instance structure */

/* ------------------------------------------------------------------------*/

typedef struct {
mr_small base;       /* number base     */
mr_small apbase;     /* apparent base   */
int   pack;          /* packing density */
int   lg2b;          /* bits in base    */
mr_small base2;      /* 2^mr_lg2b          */
BOOL (*user)(void);  /* pointer to user supplied function */

int   nib;           /* length of bigs  */
#ifndef MR_STRIPPED_DOWN
int   depth;                 /* error tracing ..*/
int   trace[MR_MAXDEPTH];    /* .. mechanism    */
#endif
BOOL  check;         /* overflow check  */
BOOL  fout;          /* Output to file   */
BOOL  fin;           /* Input from file  */
BOOL  active;

#ifndef MR_NO_FILE_IO

FILE  *infile;       /* Input file       */
FILE  *otfile;       /* Output file      */

#endif


#ifndef MR_NO_RAND
mr_unsign32 ira[NK];  /* random number...   */
int         rndptr;   /* ...array & pointer */
mr_unsign32 borrow;
#endif

            /* Montgomery constants */
mr_small ndash;
big modulus;
big pR;
BOOL ACTIVE;
BOOL MONTY;

                       /* Elliptic Curve details   */
#ifndef MR_NO_SS
BOOL SS;               /* True for Super-Singular  */
#endif
#ifndef MR_NOKOBLITZ
BOOL KOBLITZ;          /* True for a Koblitz curve */
#endif
#ifndef MR_AFFINE_ONLY
int coord;
#endif
int Asize,Bsize;

int M,AA,BB,CC;     /* for GF(2^m) curves */

/*
mr_small pm,mask;
int e,k,Me,m;       for GF(p^m) curves */


#ifndef MR_STATIC

int logN;           /* constants for fast fourier fft multiplication */
int nprimes,degree;
mr_utype *prime,*cr;
mr_utype *inverse,**roots;
small_chinese chin;
mr_utype const1,const2,const3;
mr_small msw,lsw;
mr_utype **s1,**s2;   /* pre-computed tables for polynomial reduction */
mr_utype **t;         /* workspace */
mr_utype *wa;
mr_utype *wb;
mr_utype *wc;

#endif

BOOL same;
BOOL first_one;
BOOL debug;

big w0;            /* workspace bigs  */
big w1,w2,w3,w4;
big w5,w6,w7;
big w8,w9,w10,w11;
big w12,w13,w14,w15;
big sru;
big one;

#ifdef MR_KCM
big big_ndash;
big ws,wt;
#endif

big A,B;

/* User modifiables */

#ifndef MR_SIMPLE_IO
int  IOBSIZ;       /* size of i/o buffer */
#endif
BOOL ERCON;        /* error control   */
int  ERNUM;        /* last error code */
int  NTRY;         /* no. of tries for probablistic primality testing   */
#ifndef MR_SIMPLE_IO
int  INPLEN;       /* input length               */
#ifndef MR_SIMPLE_BASE
int  IOBASE;       /* base for input and output */

#endif
#endif
#ifdef MR_FLASH
BOOL EXACT;        /* exact flag      */
BOOL RPOINT;       /* =ON for radix point, =OFF for fractions in output */
#endif
#ifndef MR_STRIPPED_DOWN
BOOL TRACER;       /* turns trace tracker on/off */
#endif

#ifdef MR_STATIC
const int *PRIMES;                      /* small primes array         */
#ifndef MR_SIMPLE_IO
char IOBUFF[MR_DEFAULT_BUFFER_SIZE];    /* i/o buffer    */
#endif
#else
int *PRIMES;        /* small primes array         */
#ifndef MR_SIMPLE_IO
char *IOBUFF;       /* i/o buffer    */
#endif
#endif

#ifdef MR_FLASH
int   workprec;
int   stprec;        /* start precision */

int RS,RD;
double D;

double db,n,p;
int a,b,c,d,r,q,oldn,ndig;
mr_small u,v,ku,kv;

BOOL last,carryon;
flash pi;

#endif

#ifdef MR_FP_ROUNDING
mr_large inverse_base;
#endif

#ifndef MR_STATIC
char *workspace;
#else
char workspace[MR_BIG_RESERVE(MR_SPACES)];
#endif

int TWIST; /* set to twisted curve */
int qnr;    /* a QNR -1 for p=3 mod 4, -2 for p=5 mod 8, 0 otherwise */
int cnr;    /* a cubic non-residue */
int pmod8;
int pmod9;
BOOL NO_CARRY;
} miracl;

/* ------------------------------------------------------------------------*/


#ifndef MR_GENERIC_MT

#ifdef MR_WINDOWS_MT
#define MR_OS_THREADS
#endif

#ifdef MR_UNIX_MT
#define MR_OS_THREADS
#endif

#ifdef MR_OPENMP_MT
#define MR_OS_THREADS
#endif


#ifndef MR_OS_THREADS

extern miracl *mr_mip;  /* pointer to MIRACL's only global variable */

#endif

#endif

#ifdef MR_GENERIC_MT

#ifdef MR_STATIC
#define MR_GENERIC_AND_STATIC
#endif

#define _MIPT_  miracl *,
#define _MIPTO_ miracl *
#define _MIPD_  miracl *mr_mip,
#define _MIPDO_ miracl *mr_mip
#define _MIPP_  mr_mip,
#define _MIPPO_ mr_mip

#else

#define _MIPT_    
#define _MIPTO_  void  
#define _MIPD_    
#define _MIPDO_  void  
#define _MIPP_    
#define _MIPPO_    

#endif

/* Preamble and exit code for MIRACL routines. *
 * Not used if MR_STRIPPED_DOWN is defined     */ 

#ifdef MR_STRIPPED_DOWN
#define MR_OUT
#define MR_IN(N)
#else
#define MR_OUT  mr_mip->depth--;        
#define MR_IN(N) mr_mip->depth++; if (mr_mip->depth<MR_MAXDEPTH) {mr_mip->trace[mr_mip->depth]=(N); if (mr_mip->TRACER) mr_track(_MIPPO_); }
#endif

/* Function definitions  */

/* Group 0 - Internal routines */

extern void  mr_berror(_MIPT_ int);
extern mr_small mr_shiftbits(mr_small,int);
extern mr_small mr_setbase(_MIPT_ mr_small);
extern void  mr_track(_MIPTO_ );
extern void  mr_lzero(big);
extern BOOL  mr_notint(flash);
extern int   mr_lent(flash);
extern void  mr_padd(_MIPT_ big,big,big);
extern void  mr_psub(_MIPT_ big,big,big);
extern void  mr_pmul(_MIPT_ big,mr_small,big);
#ifdef MR_FP_ROUNDING
extern mr_large mr_invert(mr_small);
extern mr_small imuldiv(mr_small,mr_small,mr_small,mr_small,mr_large,mr_small *);
extern mr_small mr_sdiv(_MIPT_ big,mr_small,mr_large,big);
#else
extern mr_small mr_sdiv(_MIPT_ big,mr_small,big);
extern void mr_and(big,big,big);
extern void mr_xor(big,big,big);
#endif
extern void  mr_shift(_MIPT_ big,int,big); 
extern miracl *mr_first_alloc(void);
extern void  *mr_alloc(_MIPT_ int,int);
extern void  mr_free(void *);  
extern void  set_user_function(_MIPT_ BOOL (*)(void));
extern void  set_io_buffer_size(_MIPT_ int);
extern int   mr_testbit(_MIPT_ big,int);
extern void  mr_addbit(_MIPT_ big,int);
extern int   recode(_MIPT_ big ,int ,int ,int );
extern int   mr_window(_MIPT_ big,int,int *,int *,int);
extern int   mr_window2(_MIPT_ big,big,int,int *,int *);
extern int   mr_naf_window(_MIPT_ big,big,int,int *,int *,int);

extern int   mr_fft_init(_MIPT_ int,big,big,BOOL);
extern void  mr_dif_fft(_MIPT_ int,int,mr_utype *);
extern void  mr_dit_fft(_MIPT_ int,int,mr_utype *);
extern void  fft_reset(_MIPTO_);

extern int   mr_poly_mul(_MIPT_ int,big*,int,big*,big*);
extern int   mr_poly_sqr(_MIPT_ int,big*,big*);
extern void  mr_polymod_set(_MIPT_ int,big*,big*);
extern int   mr_poly_rem(_MIPT_ int,big *,big *);

extern int   mr_ps_big_mul(_MIPT_ int,big *,big *,big *);
extern int   mr_ps_zzn_mul(_MIPT_ int,big *,big *,big *);

extern mr_small muldiv(mr_small,mr_small,mr_small,mr_small,mr_small *);
extern mr_small muldvm(mr_small,mr_small,mr_small,mr_small *); 
extern mr_small muldvd(mr_small,mr_small,mr_small,mr_small *); 
extern void     muldvd2(mr_small,mr_small,mr_small *,mr_small *); 

extern flash mirvar_mem_variable(char *,int,int);
extern epoint* epoint_init_mem_variable(_MIPT_ char *,int,int);

/* Group 1 - General purpose, I/O and basic arithmetic routines  */

extern unsigned int   igcd(unsigned int,unsigned int); 
extern unsigned long  lgcd(unsigned long,unsigned long); 
extern mr_small sgcd(mr_small,mr_small);
extern unsigned int   isqrt(unsigned int,unsigned int);
extern unsigned long  mr_lsqrt(unsigned long,unsigned long);
extern void  irand(_MIPT_ mr_unsign32);
extern mr_small brand(_MIPTO_ );       
extern void  zero(flash);
extern void  convert(_MIPT_ int,big);
extern void  uconvert(_MIPT_ unsigned int,big);
extern void  lgconv(_MIPT_ long,big);
extern void  ulgconv(_MIPT_ unsigned long,big);
extern void  tconvert(_MIPT_ mr_utype,big);

#ifdef mr_dltype
extern void  dlconv(_MIPT_ mr_dltype,big);
#endif

extern flash mirvar(_MIPT_ int);
extern flash mirvar_mem(_MIPT_ char *,int);
extern void  mirkill(big);
extern void  *memalloc(_MIPT_ int);
extern void  memkill(_MIPT_ char *,int);
extern void  mr_init_threading(void);
extern void  mr_end_threading(void);
extern miracl *get_mip(void );
extern void  set_mip(miracl *);
#ifdef MR_GENERIC_AND_STATIC
extern miracl *mirsys(miracl *,int,mr_small);
#else
extern miracl *mirsys(int,mr_small);
#endif
extern miracl *mirsys_basic(miracl *,int,mr_small);
extern void  mirexit(_MIPTO_ );
extern int   exsign(flash);
extern void  insign(int,flash);
extern int   getdig(_MIPT_ big,int);  
extern int   numdig(_MIPT_ big);        
extern void  putdig(_MIPT_ int,big,int);
extern void  copy(flash,flash);  
extern void  negify(flash,flash);
extern void  absol(flash,flash); 
extern int   size(big);
extern int   mr_compare(big,big);
extern void  add(_MIPT_ big,big,big);
extern void  subtract(_MIPT_ big,big,big);
extern void  incr(_MIPT_ big,int,big);    
extern void  decr(_MIPT_ big,int,big);    
extern void  premult(_MIPT_ big,int,big); 
extern int   subdiv(_MIPT_ big,int,big);  
extern BOOL  subdivisible(_MIPT_ big,int);
extern int   remain(_MIPT_ big,int);   
extern void  bytes_to_big(_MIPT_ int,const char *,big);
extern int   big_to_bytes(_MIPT_ int,big,char *,BOOL);
extern mr_small normalise(_MIPT_ big,big);
extern void  multiply(_MIPT_ big,big,big);
extern void  fft_mult(_MIPT_ big,big,big);
extern BOOL  fastmultop(_MIPT_ int,big,big,big);
extern void  divide(_MIPT_ big,big,big);  
extern BOOL  divisible(_MIPT_ big,big);   
extern void  mad(_MIPT_ big,big,big,big,big,big);
extern int   instr(_MIPT_ flash,char *);
extern int   otstr(_MIPT_ flash,char *);
extern int   cinstr(_MIPT_ flash,char *);
extern int   cotstr(_MIPT_ flash,char *);
extern epoint* epoint_init(_MIPTO_ );
extern epoint* epoint_init_mem(_MIPT_ char *,int);
extern void* ecp_memalloc(_MIPT_ int);
void ecp_memkill(_MIPT_ char *,int);
BOOL init_big_from_rom(big,int,const mr_small *,int ,int *);
BOOL init_point_from_rom(epoint *,int,const mr_small *,int,int *);

#ifndef MR_NO_FILE_IO

extern int   innum(_MIPT_ flash,FILE *);          
extern int   otnum(_MIPT_ flash,FILE *);
extern int   cinnum(_MIPT_ flash,FILE *);
extern int   cotnum(_MIPT_ flash,FILE *);

#endif

/* Group 2 - Advanced arithmetic routines */

extern mr_small smul(mr_small,mr_small,mr_small);
extern mr_small spmd(mr_small,mr_small,mr_small); 
extern mr_small invers(mr_small,mr_small);
extern mr_small sqrmp(mr_small,mr_small);
extern int      jac(mr_small,mr_small);

extern void  gprime(_MIPT_ int);
extern int   jack(_MIPT_ big,big);
extern int   egcd(_MIPT_ big,big,big);
extern int   xgcd(_MIPT_ big,big,big,big,big);
extern int   invmodp(_MIPT_ big,big,big);
extern int   logb2(_MIPT_ big);
extern int   hamming(_MIPT_ big);
extern void  expb2(_MIPT_ int,big);
extern void  bigbits(_MIPT_ int,big);
extern void  expint(_MIPT_ int,int,big);
extern void  sftbit(_MIPT_ big,int,big);
extern void  power(_MIPT_ big,long,big,big);
extern void  powmod(_MIPT_ big,big,big,big);
extern void  powmod2(_MIPT_ big,big,big,big,big,big);
extern void  powmodn(_MIPT_ int,big *,big *,big,big);
extern int   powltr(_MIPT_ int,big,big,big);
extern BOOL  double_inverse(_MIPT_ big,big,big,big,big);
extern BOOL  multi_inverse(_MIPT_ int,big*,big,big*);
extern void  lucas(_MIPT_ big,big,big,big,big);
extern BOOL  nroot(_MIPT_ big,int,big);
extern BOOL  sqroot(_MIPT_ big,big,big);
extern void  bigrand(_MIPT_ big,big);
extern void  bigdig(_MIPT_ int,int,big);
extern int   trial_division(_MIPT_ big,big);
extern BOOL  isprime(_MIPT_ big);
extern BOOL  nxprime(_MIPT_ big,big);
extern BOOL  nxsafeprime(_MIPT_ int,int,big,big);
extern BOOL  crt_init(_MIPT_ big_chinese *,int,big *);
extern void  crt(_MIPT_ big_chinese *,big *,big);
extern void  crt_end(big_chinese *);
extern BOOL  scrt_init(_MIPT_ small_chinese *,int,mr_utype *);    
extern void  scrt(_MIPT_ small_chinese*,mr_utype *,big); 
extern void  scrt_end(small_chinese *);
#ifndef MR_STATIC
extern BOOL  brick_init(_MIPT_ brick *,big,big,int,int);
extern void  brick_end(brick *);
#else
extern void  brick_init(brick *,const mr_small *,big,int,int);
#endif
extern void  pow_brick(_MIPT_ brick *,big,big);
#ifndef MR_STATIC
extern BOOL  ebrick_init(_MIPT_ ebrick *,big,big,big,big,big,int,int);
extern void  ebrick_end(ebrick *);
#else
extern void  ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
#endif
extern int   mul_brick(_MIPT_ ebrick*,big,big,big);
#ifndef MR_STATIC
extern BOOL  ebrick2_init(_MIPT_ ebrick2 *,big,big,big,big,int,int,int,int,int,int);
extern void  ebrick2_end(ebrick2 *);
#else
extern void  ebrick2_init(ebrick2 *,const mr_small *,big,big,int,int,int,int,int,int);
#endif
extern int   mul2_brick(_MIPT_ ebrick2*,big,big,big);

/* Montgomery stuff */

extern mr_small prepare_monty(_MIPT_ big);
extern void  kill_monty(_MIPTO_ );
extern void  nres(_MIPT_ big,big);        
extern void  redc(_MIPT_ big,big);        

extern void  nres_negate(_MIPT_ big,big);
extern void  nres_modadd(_MIPT_ big,big,big);  
extern void  nres_modsub(_MIPT_ big,big,big); 
extern void  nres_lazy(_MIPT_ big,big,big,big,big,big);
extern void  nres_complex(_MIPT_ big,big,big,big);
extern void  nres_double_modadd(_MIPT_ big,big,big);    
extern void  nres_double_modsub(_MIPT_ big,big,big); 
extern void  nres_premult(_MIPT_ big,int,big);
extern void  nres_modmult(_MIPT_ big,big,big);    
extern int   nres_moddiv(_MIPT_ big,big,big);     
extern void  nres_dotprod(_MIPT_ int,big *,big *,big);
extern void  nres_powmod(_MIPT_ big,big,big);     
extern void  nres_powltr(_MIPT_ int,big,big);     
extern void  nres_powmod2(_MIPT_ big,big,big,big,big);     
extern void  nres_powmodn(_MIPT_ int,big *,big *,big);
extern BOOL  nres_sqroot(_MIPT_ big,big);
extern void  nres_lucas(_MIPT_ big,big,big,big);
extern BOOL  nres_double_inverse(_MIPT_ big,big,big,big);
extern BOOL  nres_multi_inverse(_MIPT_ int,big *,big *);
extern void  nres_div2(_MIPT_ big,big);
extern void  nres_div3(_MIPT_ big,big);
extern void  nres_div5(_MIPT_ big,big);

extern void  shs_init(sha *);
extern void  shs_process(sha *,int);
extern void  shs_hash(sha *,char *);

extern void  shs256_init(sha256 *);
extern void  shs256_process(sha256 *,int);
extern void  shs256_hash(sha256 *,char *);

#ifdef mr_unsign64

extern void  shs512_init(sha512 *);
extern void  shs512_process(sha512 *,int);
extern void  shs512_hash(sha512 *,char *);

extern void  shs384_init(sha384 *);
extern void  shs384_process(sha384 *,int);
extern void  shs384_hash(sha384 *,char *);

extern void  sha3_init(sha3 *,int);
extern void  sha3_process(sha3 *,int);
extern void  sha3_hash(sha3 *,char *);

#endif

extern BOOL  aes_init(aes *,int,int,char *,char *);
extern void  aes_getreg(aes *,char *);
extern void  aes_ecb_encrypt(aes *,MR_BYTE *);
extern void  aes_ecb_decrypt(aes *,MR_BYTE *);
extern mr_unsign32 aes_encrypt(aes *,char *);
extern mr_unsign32 aes_decrypt(aes *,char *);
extern void  aes_reset(aes *,int,char *);
extern void  aes_end(aes *);

extern void  gcm_init(gcm *,int,char *,int,char *);
extern BOOL  gcm_add_header(gcm *,char *,int);
extern BOOL  gcm_add_cipher(gcm *,int,char *,int,char *);
extern void  gcm_finish(gcm *,char *);

extern void FPE_encrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
extern void FPE_decrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);

extern void  strong_init(csprng *,int,char *,mr_unsign32);   
extern int   strong_rng(csprng *);
extern void  strong_bigrand(_MIPT_ csprng *,big,big);
extern void  strong_bigdig(_MIPT_ csprng *,int,int,big);
extern void  strong_kill(csprng *);

/* special modular multipliers */

extern void  comba_mult(big,big,big);
extern void  comba_square(big,big);
extern void  comba_redc(_MIPT_ big,big);
extern void  comba_modadd(_MIPT_ big,big,big);
extern void  comba_modsub(_MIPT_ big,big,big);
extern void  comba_double_modadd(_MIPT_ big,big,big);
extern void  comba_double_modsub(_MIPT_ big,big,big);
extern void  comba_negate(_MIPT_ big,big);
extern void  comba_add(big,big,big);
extern void  comba_sub(big,big,big);
extern void  comba_double_add(big,big,big);
extern void  comba_double_sub(big,big,big);

extern void  comba_mult2(_MIPT_ big,big,big);

extern void  fastmodmult(_MIPT_ big,big,big);
extern void  fastmodsquare(_MIPT_ big,big);   

extern void  kcm_mul(_MIPT_ big,big,big);
extern void  kcm_sqr(_MIPT_ big,big); 
extern void  kcm_redc(_MIPT_ big,big); 

extern void  kcm_multiply(_MIPT_ int,big,big,big);
extern void  kcm_square(_MIPT_ int,big,big);
extern BOOL  kcm_top(_MIPT_ int,big,big,big);

/* elliptic curve stuff */

extern BOOL point_at_infinity(epoint *);

extern void mr_jsf(_MIPT_ big,big,big,big,big,big);

extern void ecurve_init(_MIPT_ big,big,big,int);
extern int  ecurve_add(_MIPT_ epoint *,epoint *);
extern int  ecurve_sub(_MIPT_ epoint *,epoint *);
extern void ecurve_double_add(_MIPT_ epoint *,epoint *,epoint *,epoint *,big *,big *);
extern void ecurve_multi_add(_MIPT_ int,epoint **,epoint **);
extern void ecurve_double(_MIPT_ epoint*);
extern int  ecurve_mult(_MIPT_ big,epoint *,epoint *);
extern void ecurve_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
extern void ecurve_multn(_MIPT_ int,big *,epoint**,epoint *);

extern BOOL epoint_x(_MIPT_ big);
extern BOOL epoint_set(_MIPT_ big,big,int,epoint*);
extern int  epoint_get(_MIPT_ epoint*,big,big);
extern void epoint_getxyz(_MIPT_ epoint *,big,big,big);
extern BOOL epoint_norm(_MIPT_ epoint *);
extern BOOL epoint_multi_norm(_MIPT_ int,big *,epoint **);  
extern void epoint_free(epoint *);
extern void epoint_copy(epoint *,epoint *);
extern BOOL epoint_comp(_MIPT_ epoint *,epoint *);
extern void epoint_negate(_MIPT_ epoint *);

extern BOOL ecurve2_init(_MIPT_ int,int,int,int,big,big,BOOL,int);
extern big  ecurve2_add(_MIPT_ epoint *,epoint *);
extern big  ecurve2_sub(_MIPT_ epoint *,epoint *);
extern void ecurve2_multi_add(_MIPT_ int,epoint **,epoint **);
extern void ecurve2_mult(_MIPT_ big,epoint *,epoint *);
extern void ecurve2_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
extern void ecurve2_multn(_MIPT_ int,big *,epoint**,epoint *);

extern epoint* epoint2_init(_MIPTO_ );
extern BOOL epoint2_set(_MIPT_ big,big,int,epoint*);
extern int  epoint2_get(_MIPT_ epoint*,big,big);
extern void epoint2_getxyz(_MIPT_ epoint *,big,big,big);
extern int  epoint2_norm(_MIPT_ epoint *);
extern void epoint2_free(epoint *);
extern void epoint2_copy(epoint *,epoint *);
extern BOOL epoint2_comp(_MIPT_ epoint *,epoint *);
extern void epoint2_negate(_MIPT_ epoint *);

/* GF(2) stuff */

extern BOOL prepare_basis(_MIPT_ int,int,int,int,BOOL);
extern int parity2(big);
extern BOOL multi_inverse2(_MIPT_ int,big *,big *);
extern void add2(big,big,big);
extern void incr2(big,int,big);
extern void reduce2(_MIPT_ big,big);
extern void multiply2(_MIPT_ big,big,big);
extern void modmult2(_MIPT_ big,big,big);
extern void modsquare2(_MIPT_ big,big);
extern void power2(_MIPT_ big,int,big);
extern void sqroot2(_MIPT_ big,big);
extern void halftrace2(_MIPT_ big,big);
extern BOOL quad2(_MIPT_ big,big);
extern BOOL inverse2(_MIPT_ big,big);
extern void karmul2(int,mr_small *,mr_small *,mr_small *,mr_small *);
extern void karmul2_poly(_MIPT_ int,big *,big *,big *,big *);
extern void karmul2_poly_upper(_MIPT_ int,big *,big *,big *,big *);
extern void gf2m_dotprod(_MIPT_ int,big *,big *,big);
extern int  trace2(_MIPT_ big);
extern void rand2(_MIPT_ big);
extern void gcd2(_MIPT_ big,big,big);
extern int degree2(big);

/* zzn2 stuff */

extern BOOL zzn2_iszero(zzn2 *);
extern BOOL zzn2_isunity(_MIPT_ zzn2 *);
extern void zzn2_from_int(_MIPT_ int,zzn2 *);
extern void zzn2_from_ints(_MIPT_ int,int,zzn2 *);
extern void zzn2_copy(zzn2 *,zzn2 *);
extern void zzn2_zero(zzn2 *);
extern void zzn2_negate(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_conj(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_add(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_sub(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_smul(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_mul(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
extern void zzn2_sqr(_MIPT_ zzn2 *,zzn2 *);
extern void zzn2_inv(_MIPT_ zzn2 *);
extern void zzn2_timesi(_MIPT_ zzn2 *);
extern void zzn2_powl(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_from_zzns(big,big,zzn2 *);
extern void zzn2_from_bigs(_MIPT_ big,big,zzn2 *);
extern void zzn2_from_zzn(big,zzn2 *);
extern void zzn2_from_big(_MIPT_ big, zzn2 *);
extern void zzn2_sadd(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_ssub(_MIPT_ zzn2 *,big,zzn2 *);
extern void zzn2_div2(_MIPT_ zzn2 *);
extern void zzn2_div3(_MIPT_ zzn2 *);
extern void zzn2_div5(_MIPT_ zzn2 *);
extern void zzn2_imul(_MIPT_ zzn2 *,int,zzn2 *);
extern BOOL zzn2_compare(zzn2 *,zzn2 *);
extern void zzn2_txx(_MIPT_ zzn2 *);
extern void zzn2_txd(_MIPT_ zzn2 *);
extern BOOL zzn2_sqrt(_MIPT_ zzn2 *,zzn2 *);
extern BOOL zzn2_qr(_MIPT_ zzn2 *);
extern BOOL zzn2_multi_inverse(_MIPT_ int,zzn2 *,zzn2 *);


/* zzn3 stuff */

extern void zzn3_set(_MIPT_ int,big);
extern BOOL zzn3_iszero(zzn3 *);
extern BOOL zzn3_isunity(_MIPT_ zzn3 *);
extern void zzn3_from_int(_MIPT_ int,zzn3 *);
extern void zzn3_from_ints(_MIPT_ int,int,int,zzn3 *);
extern void zzn3_copy(zzn3 *,zzn3 *);
extern void zzn3_zero(zzn3 *);
extern void zzn3_negate(_MIPT_ zzn3 *,zzn3 *);
extern void zzn3_powq(_MIPT_ zzn3 *,zzn3 *);
extern void zzn3_add(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_sub(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_smul(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_mul(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
extern void zzn3_inv(_MIPT_ zzn3 *);
extern void zzn3_timesi(_MIPT_ zzn3 *);
extern void zzn3_timesi2(_MIPT_ zzn3 *);
extern void zzn3_powl(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_from_zzns(big,big,big,zzn3 *);
extern void zzn3_from_bigs(_MIPT_ big,big,big,zzn3 *);
extern void zzn3_from_zzn(big,zzn3 *);
extern void zzn3_from_zzn_1(big,zzn3 *);
extern void zzn3_from_zzn_2(big,zzn3 *);
extern void zzn3_from_big(_MIPT_ big, zzn3 *);
extern void zzn3_sadd(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_ssub(_MIPT_ zzn3 *,big,zzn3 *);
extern void zzn3_div2(_MIPT_ zzn3 *);
extern void zzn3_imul(_MIPT_ zzn3 *,int,zzn3 *);
extern BOOL zzn3_compare(zzn3 *,zzn3 *);

/* zzn4 stuff */

extern BOOL zzn4_iszero(zzn4 *);
extern BOOL zzn4_isunity(_MIPT_ zzn4 *);
extern void zzn4_from_int(_MIPT_ int,zzn4 *);
extern void zzn4_copy(zzn4 *,zzn4 *);
extern void zzn4_zero(zzn4 *);
extern void zzn4_negate(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_powq(_MIPT_ zzn2 *,zzn4 *);
extern void zzn4_add(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_sub(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_smul(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_sqr(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_mul(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
extern void zzn4_inv(_MIPT_ zzn4 *);
extern void zzn4_timesi(_MIPT_ zzn4 *);
extern void zzn4_tx(_MIPT_ zzn4 *);
extern void zzn4_from_zzn2s(zzn2 *,zzn2 *,zzn4 *);
extern void zzn4_from_zzn2(zzn2 *,zzn4 *);
extern void zzn4_from_zzn2h(zzn2 *,zzn4 *);
extern void zzn4_from_zzn(big,zzn4 *);
extern void zzn4_from_big(_MIPT_ big , zzn4 *);
extern void zzn4_sadd(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_ssub(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
extern void zzn4_div2(_MIPT_ zzn4 *);
extern void zzn4_conj(_MIPT_ zzn4 *,zzn4 *);
extern void zzn4_imul(_MIPT_ zzn4 *,int,zzn4 *);
extern void zzn4_lmul(_MIPT_ zzn4 *,big,zzn4 *);
extern BOOL zzn4_compare(zzn4 *,zzn4 *);

/* ecn2 stuff */

extern BOOL ecn2_iszero(ecn2 *);
extern void ecn2_copy(ecn2 *,ecn2 *);
extern void ecn2_zero(ecn2 *);
extern BOOL ecn2_compare(_MIPT_ ecn2 *,ecn2 *);
extern void ecn2_norm(_MIPT_ ecn2 *);
extern void ecn2_get(_MIPT_ ecn2 *,zzn2 *,zzn2 *,zzn2 *);
extern void ecn2_getxy(ecn2 *,zzn2 *,zzn2 *);
extern void ecn2_getx(ecn2 *,zzn2 *);
extern void ecn2_getz(_MIPT_ ecn2 *,zzn2 *);
extern void ecn2_rhs(_MIPT_ zzn2 *,zzn2 *);
extern BOOL ecn2_set(_MIPT_ zzn2 *,zzn2 *,ecn2 *);
extern BOOL ecn2_setx(_MIPT_ zzn2 *,ecn2 *);
extern void ecn2_setxyz(_MIPT_ zzn2 *,zzn2 *,zzn2 *,ecn2 *);
extern void ecn2_negate(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_add3(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *,zzn2 *);
extern BOOL ecn2_add2(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *);
extern BOOL ecn2_add1(_MIPT_ ecn2 *,ecn2 *,zzn2 *);
extern BOOL ecn2_add(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_sub(_MIPT_ ecn2 *,ecn2 *);
extern BOOL ecn2_add_sub(_MIPT_ ecn2 *,ecn2 *,ecn2 *,ecn2 *);
extern int ecn2_mul2_jsf(_MIPT_ big,ecn2 *,big,ecn2 *,ecn2 *);
extern int ecn2_mul(_MIPT_ big,ecn2 *);
extern void ecn2_psi(_MIPT_ zzn2 *,ecn2 *);
extern BOOL ecn2_multi_norm(_MIPT_ int ,zzn2 *,ecn2 *);
extern int ecn2_mul4_gls_v(_MIPT_ big *,int,ecn2 *,big *,ecn2 *,zzn2 *,ecn2 *);
extern int ecn2_muln_engine(_MIPT_ int,int,int,int,big *,big *,big *,big *,ecn2 *,ecn2 *,ecn2 *);
extern void ecn2_precomp_gls(_MIPT_ int,BOOL,ecn2 *,zzn2 *,ecn2 *);
extern int ecn2_mul2_gls(_MIPT_ big *,ecn2 *,zzn2 *,ecn2 *);
extern void ecn2_precomp(_MIPT_ int,BOOL,ecn2 *,ecn2 *);
extern int ecn2_mul2(_MIPT_ big,int,ecn2 *,big,ecn2 *,ecn2 *);
#ifndef MR_STATIC
extern BOOL ecn2_brick_init(_MIPT_ ebrick *,zzn2 *,zzn2 *,big,big,big,int,int);
extern void ecn2_brick_end(ebrick *);
#else
extern void ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
#endif
extern void ecn2_mul_brick_gls(_MIPT_ ebrick *B,big *,zzn2 *,zzn2 *,zzn2 *);
extern void ecn2_multn(_MIPT_ int,big *,ecn2 *,ecn2 *);
extern void ecn2_mult4(_MIPT_ big *,ecn2 *,ecn2 *);
/* Group 3 - Floating-slash routines      */

#ifdef MR_FLASH
extern void  fpack(_MIPT_ big,big,flash);
extern void  numer(_MIPT_ flash,big);    
extern void  denom(_MIPT_ flash,big);    
extern BOOL  fit(big,big,int);    
extern void  build(_MIPT_ flash,int (*)(_MIPT_ big,int));
extern void  mround(_MIPT_ big,big,flash);         
extern void  flop(_MIPT_ flash,flash,int *,flash);
extern void  fmul(_MIPT_ flash,flash,flash);      
extern void  fdiv(_MIPT_ flash,flash,flash);      
extern void  fadd(_MIPT_ flash,flash,flash);      
extern void  fsub(_MIPT_ flash,flash,flash);      
extern int   fcomp(_MIPT_ flash,flash);           
extern void  fconv(_MIPT_ int,int,flash);         
extern void  frecip(_MIPT_ flash,flash);          
extern void  ftrunc(_MIPT_ flash,big,flash);      
extern void  fmodulo(_MIPT_ flash,flash,flash);
extern void  fpmul(_MIPT_ flash,int,int,flash);   
extern void  fincr(_MIPT_ flash,int,int,flash);   
extern void  dconv(_MIPT_ double,flash);          
extern double fdsize(_MIPT_ flash);
extern void  frand(_MIPT_ flash);

/* Group 4 - Advanced Flash routines */ 

extern void  fpower(_MIPT_ flash,int,flash);
extern BOOL  froot(_MIPT_ flash,int,flash); 
extern void  fpi(_MIPT_ flash);             
extern void  fexp(_MIPT_ flash,flash);      
extern void  flog(_MIPT_ flash,flash);      
extern void  fpowf(_MIPT_ flash,flash,flash);
extern void  ftan(_MIPT_ flash,flash); 
extern void  fatan(_MIPT_ flash,flash);
extern void  fsin(_MIPT_ flash,flash); 
extern void  fasin(_MIPT_ flash,flash);
extern void  fcos(_MIPT_ flash,flash);  
extern void  facos(_MIPT_ flash,flash); 
extern void  ftanh(_MIPT_ flash,flash); 
extern void  fatanh(_MIPT_ flash,flash);
extern void  fsinh(_MIPT_ flash,flash); 
extern void  fasinh(_MIPT_ flash,flash);
extern void  fcosh(_MIPT_ flash,flash); 
extern void  facosh(_MIPT_ flash,flash);
#endif


/* Test predefined Macros to determine compiler type, and hopefully 
   selectively use fast in-line assembler (or other compiler specific
   optimisations. Note I am unsure of Microsoft version numbers. So I 
   suspect are Microsoft.

   Note: It seems to be impossible to get the 16-bit Microsoft compiler
   to allow inline 32-bit op-codes. So I suspect that INLINE_ASM == 2 will
   never work with it. Pity. 

#define INLINE_ASM 1    -> generates 8086 inline assembly
#define INLINE_ASM 2    -> generates mixed 8086 & 80386 inline assembly,
                           so you can get some benefit while running in a 
                           16-bit environment on 32-bit hardware (DOS, Windows
                           3.1...)
#define INLINE_ASM 3    -> generate true 80386 inline assembly - (Using DOS 
                           extender, Windows '95/Windows NT)
                           Actually optimised for Pentium

#define INLINE_ASM 4    -> 80386 code in the GNU style (for (DJGPP)

Small, medium, compact and large memory models are supported for the
first two of the above.
                        
*/

/* To allow for inline assembly */

#ifdef __GNUC__ 
    #define ASM __asm__ __volatile__
#endif

#ifdef __TURBOC__ 
    #define ASM asm
#endif

#ifdef _MSC_VER
    #define ASM _asm
#endif

#ifndef MR_NOASM

/* Win64 - inline the time critical function */
#ifndef MR_NO_INTRINSICS
	#ifdef MR_WIN64
		#define muldvd(a,b,c,rp) (*(rp)=_umul128((a),(b),&(tm)),*(rp)+=(c),tm+=(*(rp)<(c)),tm)
		#define muldvd2(a,b,c,rp) (tr=_umul128((a),(b),&(tm)),tr+=(*(c)),tm+=(tr<(*(c))),tr+=(*(rp)),tm+=(tr<(*(rp))),*(rp)=tr,*(c)=tm)
	#endif

/* Itanium - inline the time-critical functions */

    #ifdef MR_ITANIUM
        #define muldvd(a,b,c,rp)  (tm=_m64_xmahu((a),(b),(c)),*(rp)=_m64_xmalu((a),(b),(c)),tm)
        #define muldvd2(a,b,c,rp) (tm=_m64_xmalu((a),(b),(*(c))),*(c)=_m64_xmahu((a),(b),(*(c))),tm+=*(rp),*(c)+=(tm<*(rp)),*(rp)=tm)
    #endif
#endif
/*

SSE2 code. Works as for itanium - but in fact it is slower than the regular code so not recommended
Would require a call to emmintrin.h or xmmintrin.h, and an __m128i variable tm to be declared in effected 
functions. But it works!

	#define muldvd(a,b,c,rp)  (tm=_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128((c))),*(rp)=_mm_cvtsi128_si32(tm),_mm_cvtsi128_si32(_mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))) )
	#define muldvd2(a,b,c,rp) (tm=_mm_add_epi64(_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128(*(c))),_mm_cvtsi32_si128(*(rp))),*(rp)=_mm_cvtsi128_si32(tm),*(c)=_mm_cvtsi128_si32( _mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))  )
*/

/* Borland C/Turbo C */

    #ifdef __TURBOC__ 
    #ifndef __HUGE__
        #if defined(__COMPACT__) || defined(__LARGE__)
            #define MR_LMM
        #endif

        #if MIRACL==16
            #define INLINE_ASM 1
        #endif

        #if __TURBOC__>=0x410
            #if MIRACL==32
#if defined(__SMALL__) || defined(__MEDIUM__) || defined(__LARGE__) || defined(__COMPACT__)
                    #define INLINE_ASM 2
                #else
                    #define INLINE_ASM 3
                #endif
            #endif
        #endif
    #endif
    #endif

/* Microsoft C */

    #ifdef _MSC_VER
    #ifndef M_I86HM        
        #if defined(M_I86CM) || defined(M_I86LM)
            #define MR_LMM
        #endif
        #if _MSC_VER>=600
            #if _MSC_VER<1200
                #if MIRACL==16
                    #define INLINE_ASM 1
                #endif
            #endif
        #endif
        #if _MSC_VER>=1000
			#if _MSC_VER<1500
				#if MIRACL==32
					#define INLINE_ASM 3
				#endif
			#endif
        #endif     
    #endif       
    #endif

/* DJGPP GNU C */

    #ifdef __GNUC__
    #ifdef i386
        #if MIRACL==32
            #define INLINE_ASM 4
        #endif
    #endif
    #endif

#endif



/* 
   The following contribution is from Tielo Jongmans, Netherlands
   These inline assembler routines are suitable for Watcom 10.0 and up 

   Added into miracl.h.  Notice the override of the original declarations 
   of these routines, which should be removed.

   The following pragma is optional, it is dangerous, but it saves a 
   calling sequence
*/

/*

#pragma off (check_stack);

extern unsigned int muldiv(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldiv=                 \
       "mul     edx"                \
       "add     eax,ebx"            \
       "adc     edx,0"              \
       "div     ecx"                \
       "mov     [esi],edx"          \
    parm [eax] [edx] [ebx] [ecx] [esi]   \
    value [eax]                     \
    modify [eax edx];

extern unsigned int muldvm(unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldvm=                 \
        "div     ebx"               \
        "mov     [ecx],edx"         \
    parm [edx] [eax] [ebx] [ecx]    \
    value [eax]                     \
    modify [eax edx];

extern unsigned int muldvd(unsigned int, unsigned int, unsigned int, unsigned int *);
#pragma aux muldvd=                 \
        "mul     edx"               \
        "add     eax,ebx"           \
        "adc     edx,0"             \
        "mov     [ecx],eax"         \
        "mov     eax,edx"           \
    parm [eax] [edx] [ebx] [ecx]    \
    value [eax]                     \
    modify [eax edx];

*/


#endif

fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat mirdef.h
/* 
 *   MIRACL compiler/hardware definitions - mirdef.h
 *   This version suitable for use with most 32-bit computers
 *   e.g. 80386+ PC, VAX, ARM etc. Assembly language versions of muldiv,
 *   muldvm, muldvd and muldvd2 will be necessary. See mrmuldv.any 
 *
 *   Also suitable for DJGPP GNU C Compiler
 *   ... but change __int64 to long long
 */

#define MIRACL 32
#define MR_LITTLE_ENDIAN    /* This may need to be changed        */
#define mr_utype int
                            /* the underlying type is usually int *
                             * but see mrmuldv.any                */
#define mr_unsign32 unsigned int
                            /* 32 bit unsigned type               */
#define MR_IBITS      32    /* bits in int  */
#define MR_LBITS      32    /* bits in long */
#define MR_FLASH      52      
                            /* delete this definition if integer  *
                             * only version of MIRACL required    */
                            /* Number of bits per double mantissa */

#define mr_dltype __int64   /* ... or long long for Unix/Linux */
#define mr_unsign64 unsigned __int64

#define MAXBASE ((mr_small)1<<(MIRACL-1))
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat SM2_sv.c
 
#include "SM2_sv.h"
#include "KDF.h"

#pragma comment(lib,"mymiracl.lib")

unsigned char SM2_p[32] = { 0xff,0xff,0xff,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0x00,0x00,0x00,0x00, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff };
unsigned char SM2_a[32] = { 0xff,0xff,0xff,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0x00,0x00,0x00,0x00, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xfc };
unsigned char SM2_b[32] = { 0x28,0xe9,0xfa,0x9e, 0x9d,0x9f,0x5e,0x34, 0x4d,0x5a,0x9e,0x4b,0xcf,0x65,0x09,0xa7,
0xf3,0x97,0x89,0xf5, 0x15,0xab,0x8f,0x92, 0xdd,0xbc,0xbd,0x41,0x4d,0x94,0x0e,0x93 };
unsigned char SM2_Gx[32] = { 0x32,0xc4,0xae,0x2c, 0x1f,0x19,0x81,0x19,0x5f,0x99,0x04,0x46,0x6a,0x39,0xc9,0x94,
0x8f,0xe3,0x0b,0xbf,0xf2,0x66,0x0b,0xe1,0x71,0x5a,0x45,0x89,0x33,0x4c,0x74,0xc7 };
unsigned char SM2_Gy[32] = { 0xbc,0x37,0x36,0xa2,0xf4,0xf6,0x77,0x9c,0x59,0xbd,0xce,0xe3,0x6b,0x69,0x21,0x53,0xd0,
0xa9,0x87,0x7c,0xc6,0x2a,0x47,0x40,0x02,0xdf,0x32,0xe5,0x21,0x39,0xf0,0xa0 };
unsigned char SM2_n[32] = { 0xff,0xff,0xff,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0x72,0x03,0xdf,0x6b,0x21,0xc6,0x05,0x2b,0x53,0xbb,0xf4,0x09,0x39,0xd5,0x41,0x23 };


/****************************************************************
Function: SM2_Init
Description: Initiate SM2 curve
Calls: MIRACL functions
Called By: SM2_KeyGeneration,SM2_Sign,SM2_Verify,SM2_SelfCheck
Input: null
Output: null
Return: 0: sucess;
1: parameter initialization error;
4: the given point G is not a point of order n
Others:
****************************************************************/
int SM2_Init()
{
	Gx = mirvar(0);
	Gy = mirvar(0);
	p = mirvar(0);
	a = mirvar(0);
	b = mirvar(0);
	n = mirvar(0);
	bytes_to_big(SM2_NUMWORD, SM2_Gx, Gx);
	bytes_to_big(SM2_NUMWORD, SM2_Gy, Gy);
	bytes_to_big(SM2_NUMWORD, SM2_p, p);
	bytes_to_big(SM2_NUMWORD, SM2_a, a);
	bytes_to_big(SM2_NUMWORD, SM2_b, b);
	bytes_to_big(SM2_NUMWORD, SM2_n, n);
	ecurve_init(a, b, p, MR_PROJECTIVE);
	G = epoint_init();
	nG = epoint_init();
	if (!epoint_set(Gx, Gy, 0, G))//initialise point G
	{
		return ERR_ECURVE_INIT;
	}
	ecurve_mult(n, G, nG);
	if (!point_at_infinity(nG)) //test if the order of the point is n
	{
		return ERR_ORDER;
	}
	return 0;
}
/****************************************************************
Function: Test_Point
Description: test if the given point is on SM2 curve
Calls:
Called By: SM2_KeyGeneration
Input: point
Output: null
Return: 0: sucess
3: not a valid point on curve
Others:
****************************************************************/
int Test_Point(epoint* point)
{
	big x, y, x_3, tmp;
	x = mirvar(0);
	y = mirvar(0);
	x_3 = mirvar(0);
	tmp = mirvar(0);
	//test if y^2=x^3+ax+b
	epoint_get(point, x, y);
	power(x, 3, p, x_3); //x_3=x^3 mod p
	multiply(x, a, x); //x=a*x
	divide(x, p, tmp); //x=a*x mod p , tmp=a*x/p
	add(x_3, x, x); //x=x^3+ax
	add(x, b, x); //x=x^3+ax+b
	divide(x, p, tmp); //x=x^3+ax+b mod p
	power(y, 2, p, y); //y=y^2 mod p
	if (mr_compare(x, y) != 0)
		return ERR_NOT_VALID_POINT;
	else
		return 0;
}
/****************************************************************
Function: Test_PubKey
Description: test if the given public key is valid
Calls:
Called By: SM2_KeyGeneration
Input: pubKey //a point
Output: null
Return: 0: sucess
2: a point at infinity
5: X or Y coordinate is beyond Fq
3: not a valid point on curve
4: not a point of order n
Others:
****************************************************************/
int Test_PubKey(epoint *pubKey)
{
	big x, y, x_3, tmp;
	epoint *nP;
	x = mirvar(0);
	y = mirvar(0);
	x_3 = mirvar(0);
	tmp = mirvar(0);
	nP = epoint_init();
	//test if the pubKey is the point at infinity
	if (point_at_infinity(pubKey))// if pubKey is point at infinity, return error;
		return ERR_INFINITY_POINT;
	//test if x<p and y<p both hold
	epoint_get(pubKey, x, y);
	if ((mr_compare(x, p) != -1) || (mr_compare(y, p) != -1))
		return ERR_NOT_VALID_ELEMENT;
	if (Test_Point(pubKey) != 0)
		return ERR_NOT_VALID_POINT;
	//test if the order of pubKey is equal to n
	ecurve_mult(n, pubKey, nP); // nP=[n]P
	if (!point_at_infinity(nP)) // if np is point NOT at infinity, return error;
		return ERR_ORDER;
	return 0;
}
/****************************************************************
Function: Test_Zero
Description: test if the big x is zero
Calls:
Called By: SM2_Sign
Input: pubKey //a point
Output: null
Return: 0: x!=0
1: x==0
Others:
****************************************************************/
int Test_Zero(big x)
{
	big zero;
	zero = mirvar(0);
	if (mr_compare(x, zero) == 0)
		return 1;
	else return 0;
}
/****************************************************************
Function: Test_n
Description: test if the big x is order n
Calls:
Called By: SM2_Sign
Input: big x //a miracl data type
Output: null
Return: 0: sucess
1: x==n,fail
Others:
****************************************************************/
int Test_n(big x)
{
	// bytes_to_big(32,SM2_n,n);
	if (mr_compare(x, n) == 0)
		return 1;
	else return 0;
}
/****************************************************************
Function: Test_Range
Description: test if the big x belong to the range[1,n-1]
Calls:
Called By: SM2_Verify
Input: big x ///a miracl data type
Output: null
Return: 0: sucess
1: fail
Others:
****************************************************************/
int Test_Range(big x)
{
	big one, decr_n;
	one = mirvar(0);
	decr_n = mirvar(0);
	convert(1, one);
	decr(n, 1, decr_n);
	if ((mr_compare(x, one) < 0) | (mr_compare(x, decr_n) > 0))
		return 1;
	return 0;
}
/****************************************************************
Function: SM2_KeyGeneration
Description: calculate a pubKey out of a given priKey
Calls: SM2_SelfCheck()
Called By: SM2_Init()
Input: priKey // a big number lies in[1,n-2]
Output: pubKey // pubKey=[priKey]G
Return: 0: sucess
2: a point at infinity
5: X or Y coordinate is beyond Fq
3: not a valid point on curve
4: not a point of order n
Others:
****************************************************************/
int SM2_KeyGeneration(unsigned char PriKey[], unsigned char Px[], unsigned char Py[])
{
	int i = 0;
	big d, PAx, PAy;
	epoint *PA;
	SM2_Init();
	PA = epoint_init();
	d = mirvar(0);
	PAx = mirvar(0);
	PAy = mirvar(0);
	bytes_to_big(SM2_NUMWORD, PriKey, d);
	ecurve_mult(d, G, PA);
	epoint_get(PA, PAx, PAy);
	big_to_bytes(SM2_NUMWORD, PAx, Px, TRUE);
	big_to_bytes(SM2_NUMWORD, PAy, Py, TRUE);
	i = Test_PubKey(PA);
	if (i)
		return i;
	else
		return 0;
}
/****************************************************************
Function: SM2_Sign
Description: SM2 signature algorithm
Calls: SM2_Init(),Test_Zero(),Test_n(), SM3_256()
Called By: SM2_SelfCheck()
Input: message //the message to be signed
len //the length of message
ZA // ZA=Hash(ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA)
rand //a random number K lies in [1,n-1]
d //the private key
Output: R,S //signature result
Return: 0: sucess
1: parameter initialization error;
4: the given point G is not a point of order n
6: the signed r equals 0 or r+rand equals n
7 the signed s equals 0
Others:
****************************************************************/
int SM2_Sign(unsigned char *message, int len, unsigned char ZA[], unsigned char rand[], unsigned char d[], unsigned char R[], unsigned char S[])
{
	unsigned char hash[SM3_len / 8];
	int M_len = len + SM3_len / 8;
	unsigned char *M = NULL;
	int i;
	big dA, r, s, e, k, KGx, KGy;
	big rem, rk, z1, z2;
	epoint *KG;
	i = SM2_Init();
	if (i) return i;
	//initiate
	dA = mirvar(0);
	e = mirvar(0);
	k = mirvar(0);
	KGx = mirvar(0);
	KGy = mirvar(0);
	r = mirvar(0);
	s = mirvar(0);
	rem = mirvar(0);
	rk = mirvar(0);
	z1 = mirvar(0);
	z2 = mirvar(0);
	bytes_to_big(SM2_NUMWORD, d, dA);//cinstr(dA,d);
	KG = epoint_init();
	//step1,set M=ZA||M
	M = (char *)malloc(sizeof(char)*(M_len + 1));
	memcpy(M, ZA, SM3_len / 8);
	memcpy(M + SM3_len / 8, message, len);
	//step2,generate e=H(M)
	SM3_256(M, M_len, hash);
	bytes_to_big(SM3_len / 8, hash, e);
	//step3:generate k
	bytes_to_big(SM3_len / 8, rand, k);
	//step4:calculate kG
	ecurve_mult(k, G, KG);
	//step5:calculate r
	epoint_get(KG, KGx, KGy);
	add(e, KGx, r);
	divide(r, n, rem);
	//judge r=0 or n+k=n?
	add(r, k, rk);
	if (Test_Zero(r) | Test_n(rk))
		return ERR_GENERATE_R;
	//step6:generate s
	incr(dA, 1, z1);
	xgcd(z1, n, z1, z1, z1);
	multiply(r, dA, z2);
	divide(z2, n, rem);
	subtract(k, z2, z2);
	add(z2, n, z2);
	multiply(z1, z2, s);
	divide(s, n, rem);
	//judge s=0?
	if (Test_Zero(s))
		return ERR_GENERATE_S;
	big_to_bytes(SM2_NUMWORD, r, R, TRUE);
	big_to_bytes(SM2_NUMWORD, s, S, TRUE);
	free(M);
	return 0;
}
/****************************************************************
Function: SM2_Verify
Description: SM2 verification algorithm
Calls: SM2_Init(),Test_Range(), Test_Zero(),SM3_256()
Called By: SM2_SelfCheck()
Input: message //the message to be signed
len //the length of message
ZA //ZA=Hash(ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA)
Px,Py //the public key
R,S //signature result
Output:
Return: 0: sucess
1: parameter initialization error;
4: the given point G is not a point of order n
B: public key error
8: the signed R out of range [1,n-1]
9: the signed S out of range [1,n-1]
A: the intermediate data t equals 0
C: verification fail
Others:
****************************************************************/
int SM2_Verify(unsigned char *message, int len, unsigned char ZA[], unsigned char Px[], unsigned char Py[], unsigned char R[], unsigned char S[])
{
	unsigned char hash[SM3_len / 8];
	int M_len = len + SM3_len / 8;
	unsigned char *M = NULL;
	int i;
	big PAx, PAy, r, s, e, t, rem, x1, y1;
	big RR;
	epoint *PA, *sG, *tPA;
	i = SM2_Init();
	if (i) return i;
	PAx = mirvar(0);
	PAy = mirvar(0);
	r = mirvar(0);
	s = mirvar(0);
	e = mirvar(0);
	t = mirvar(0);
	x1 = mirvar(0);
	y1 = mirvar(0);
	rem = mirvar(0);
	RR = mirvar(0);
	PA = epoint_init();
	sG = epoint_init();
	tPA = epoint_init();
	bytes_to_big(SM2_NUMWORD, Px, PAx);
	bytes_to_big(SM2_NUMWORD, Py, PAy);
	bytes_to_big(SM2_NUMWORD, R, r);
	bytes_to_big(SM2_NUMWORD, S, s);
	if (!epoint_set(PAx, PAy, 0, PA))//initialise public key
	{
		return ERR_PUBKEY_INIT;
	}
	//step1: test if r belong to [1,n-1]
	if (Test_Range(r))
		return ERR_OUTRANGE_R;
	//step2: test if s belong to [1,n-1]
	if (Test_Range(s))
		return ERR_OUTRANGE_S;
	//step3,generate M
	M = (char *)malloc(sizeof(char)*(M_len + 1));
	memcpy(M, ZA, SM3_len / 8);
	memcpy(M + SM3_len / 8, message, len);
	//step4,generate e=H(M)
	SM3_256(M, M_len, hash);
	bytes_to_big(SM3_len / 8, hash, e);
	//step5:generate t
	add(r, s, t);
	divide(t, n, rem);
	if (Test_Zero(t))
		return ERR_GENERATE_T;
	//step 6: generate(x1,y1)
	ecurve_mult(s, G, sG);
	ecurve_mult(t, PA, tPA);
	ecurve_add(sG, tPA);
	epoint_get(tPA, x1, y1);
	//step7:generate RR
	add(e, x1, RR);
	divide(RR, n, rem);
	free(M);
	if (mr_compare(RR, r) == 0)
		return 0;
	else
		return ERR_DATA_MEMCMP;
}
/****************************************************************
Function: SM2_SelfCheck
Description: SM2 self check
Calls: SM2_Init(), SM2_KeyGeneration,SM2_Sign, SM2_Verify,SM3_256()
Called By:
Input:
Output:
Return: 0: sucess
1: paremeter initialization error
2: a point at infinity
5: X or Y coordinate is beyond Fq
3: not a valid point on curve
4: not a point of order n
B: public key error
8: the signed R out of range [1,n-1]
9: the signed S out of range [1,n-1]
A: the intermediate data t equals 0
C: verification fail
Others:
****************************************************************/
int SM2_SelfCheck()
{
	//the private key
	unsigned char dA[32] = { 0x39,0x45,0x20,0x8f,0x7b,0x21,0x44,0xb1,0x3f,0x36,0xe3,0x8a,0xc6,0xd3,0x9f,
	0x95,0x88,0x93,0x93,0x69,0x28,0x60,0xb5,0x1a,0x42,0xfb,0x81,0xef,0x4d,0xf7,0xc5,0xb8 };
	unsigned char rand[32] = { 0x59,0x27,0x6E,0x27,0xD5,0x06,0x86,0x1A,0x16,0x68,0x0F,0x3A,0xD9,0xC0,0x2D,
	0xCC,0xEF,0x3C,0xC1,0xFA,0x3C,0xDB,0xE4,0xCE,0x6D,0x54,0xB8,0x0D,0xEA,0xC1,0xBC,0x21 };
	//the public key
	/* unsigned char xA[32]={0x09,0xf9,0xdf,0x31,0x1e,0x54,0x21,0xa1,0x50,0xdd,0x7d,0x16,0x1e,0x4b,0xc5,
	0xc6,0x72,0x17,0x9f,0xad,0x18,0x33,0xfc,0x07,0x6b,0xb0,0x8f,0xf3,0x56,0xf3,0x50,0x20};
	unsigned char yA[32]={0xcc,0xea,0x49,0x0c,0xe2,0x67,0x75,0xa5,0x2d,0xc6,0xea,0x71,0x8c,0xc1,0xaa,
	0x60,0x0a,0xed,0x05,0xfb,0xf3,0x5e,0x08,0x4a,0x66,0x32,0xf6,0x07,0x2d,0xa9,0xad,0x13};*/
	unsigned char xA[32], yA[32];
	unsigned char r[32], s[32];// Signature
	unsigned char IDA[16] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x31,0x32,0x33,
	0x34,0x35,0x36,0x37,0x38 };//ASCII code of userA's identification
	int IDA_len = 16;
	unsigned char ENTLA[2] = { 0x00,0x80 };//the length of userA's identification,presentation in ASCII code
	unsigned char *message = "message digest";//the message to be signed
	int len = strlen(message);//the length of message
	unsigned char ZA[SM3_len / 8];//ZA=Hash(ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA)
	unsigned char Msg[210]; //210=IDA_len+2+SM2_NUMWORD*6
	int temp;
	miracl *mip = mirsys(10000, 16);
	mip->IOBASE = 16;
	temp = SM2_KeyGeneration(dA, xA, yA);
	if (temp)
		return temp;
	// ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA
	memcpy(Msg, ENTLA, 2);
	memcpy(Msg + 2, IDA, IDA_len);
	memcpy(Msg + 2 + IDA_len, SM2_a, SM2_NUMWORD);
	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD, SM2_b, SM2_NUMWORD);
	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 2, SM2_Gx, SM2_NUMWORD);
	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 3, SM2_Gy, SM2_NUMWORD);
	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 4, xA, SM2_NUMWORD);
	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 5, yA, SM2_NUMWORD);
	SM3_256(Msg, 210, ZA);
	temp = SM2_Sign(message, len, ZA, rand, dA, r, s);
	if (temp)
		return temp;
	temp = SM2_Verify(message, len, ZA, xA, yA, r, s);
	if (temp)
		return temp;
	return 0;
}
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat SM2_sv.h
#pragma once
 
 
#include<string.h>
#include<malloc.h>
#include "miracl.h"
#define SM2_WORDSIZE 8
#define SM2_NUMBITS 256
#define SM2_NUMWORD (SM2_NUMBITS/SM2_WORDSIZE) //32
#define ERR_ECURVE_INIT 0x00000001
#define ERR_INFINITY_POINT 0x00000002
#define ERR_NOT_VALID_POINT 0x00000003
#define ERR_ORDER 0x00000004
#define ERR_NOT_VALID_ELEMENT 0x00000005
#define ERR_GENERATE_R 0x00000006
#define ERR_GENERATE_S 0x00000007
#define ERR_OUTRANGE_R 0x00000008
#define ERR_OUTRANGE_S 0x00000009
#define ERR_GENERATE_T 0x0000000A
#define ERR_PUBKEY_INIT 0x0000000B
#define ERR_DATA_MEMCMP 0x0000000C



extern unsigned char SM2_p[32];
extern unsigned char SM2_a[32];
extern unsigned char SM2_b[32];
extern unsigned char SM2_n[32];
extern unsigned char SM2_Gx[32];
extern unsigned char SM2_Gy[32];
extern unsigned char SM2_h[32];




big Gx, Gy, p, a, b, n;
epoint *G, *nG;
int SM2_Init();
int Test_Point(epoint* point);
int Test_PubKey(epoint *pubKey);
int Test_Zero(big x);
int Test_n(big x);
int Test_Range(big x);
int SM2_KeyGeneration(unsigned char PriKey[], unsigned char Px[], unsigned char Py[]);
int SM2_Sign(unsigned char *message, int len, unsigned char ZA[], unsigned char rand[], unsigned char d[], unsigned char R[], unsigned char S[]);
int SM2_Verify(unsigned char *message, int len, unsigned char ZA[], unsigned char Px[], unsigned char Py[], unsigned char R[], unsigned char S[]);
int SM2_SelfCheck();
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat test.c

#include "SM2_sv.h"

void main()
{
	if (SM2_SelfCheck())
	{
		puts("SM2签名验签出错");
		return;
	}
	puts("SM2签名验签成功");
}
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat Makefile
# Makefile for SM2 Signature and Verification

# Compiler settings
CC = gcc
CFLAGS = -Wall -Wextra -std=c99 -I. # Add -g for debug information
LDFLAGS = -L. -lmymiracl # Assuming the MIRACL library is named libmymiracl.a

# Source files
SOURCES = kdf.c SM2_sv.c test.c
HEADERS = kdf.h SM2_sv.h miracl.h mirdef.h

# Object files
OBJECTS = $(SOURCES:.c=.o)

# Executable name
EXECUTABLE = test

# Default target
all: $(EXECUTABLE)

# Link the executable
$(EXECUTABLE): $(OBJECTS)
	$(CC) $(LDFLAGS) $(OBJECTS) -o $@

# Compile source files
%.o: %.c $(HEADERS)
	$(CC) $(CFLAGS) -c $< -o $@

# Clean build artifacts
clean:
	rm -f $(OBJECTS) $(EXECUTABLE)

# Run the test
run: $(EXECUTABLE)
	./$(EXECUTABLE)

# Phony targets
.PHONY: all clean run
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ make
gcc -Wall -Wextra -std=c99 -I.  -c kdf.c -o kdf.o
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ 
./test
SM2签名验签成功
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ git add kdf.c  kdf.h  Makefile  miracl.h  mirdef.h  SM2_sv.c  SM2_sv.h  test.c
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ git commit -m "sm2 qian ming yan qian jiao cai dai ma"
[master df9ed53] sm2 jia mi jie mi jiao cai dai ma
 8 files changed, 2584 insertions(+)
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/Makefile
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/SM2_sv.c
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/SM2_sv.h
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/kdf.c
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/kdf.h
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/miracl.h
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/mirdef.h
 create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/test.c
fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ git log
commit df9ed537ac1b8629da6938fadc4981a9a3fcbf17 (HEAD -> master)
Author: fengtairui <1978274655@qq.com>
Date:   Sun Nov 3 23:35:57 2024 +0800

    sm2 qian ming yan qian jiao cai dai ma
命令行验证
自验证成功

SM3

源代码运行

fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ gcc -o sm33 sm33.c
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ ./sm33
消息:abcd
Hash结果:
82ec580fe6d36ae4f81cae3c73f4a5b3b5a09c943172dc9053c69fd8e18dca1e
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ gcc -o sm31 sm31.c
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ ./sm31
消息:abc
Hash结果:
len=32
66 c7 f0 f4 62 ee ed d9 d1 f2 d4 6b dc 10 e4 e2 
41 67 c4 87 5c f2 f7 a2 29 7d a0 2b 8f 4b a8 e0 
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ cat sm33.c
// sm3_test.c: 实现SM3哈希算法并测试对"abc"的哈希结果  
#include <stdio.h>  
#include <stdint.h>  
#include <string.h>  
#include <stdlib.h>  

// SM3 初始向量  
const uint32_t SM3_IV[8] = {  
    0x7380166F,  
    0x4914B2B9,  
    0x172442D7,  
    0xDA8A0600,  
    0xA96F30BC,  
    0x163138AA,  
    0xE38DEE4D,  
    0xB0FB0E4E  
};  

// SM3 上下文结构体  
typedef struct {  
    uint32_t total[2];    // 消息长度,以位为单位  
    uint32_t state[8];    // 哈希状态  
    unsigned char buffer[64]; // 数据缓冲区  
} sm3_context;  

// 大端序读取4字节为一个32位无符号整数  
#define GET_ULONG_BE(n,b,i)                             \
    do {                                                \
        (n) = ((uint32_t)(b)[(i)] << 24)             \
            | ((uint32_t)(b)[(i) + 1] << 16)         \
            | ((uint32_t)(b)[(i) + 2] << 8)          \
            | ((uint32_t)(b)[(i) + 3]);              \
    } while(0)  

// 大端序写入32位无符号整数为4字节  
#define PUT_ULONG_BE(n,b,i)                             \
    do {                                                \
        (b)[(i)]     = (unsigned char)((n) >> 24);    \
        (b)[(i) + 1] = (unsigned char)((n) >> 16);    \
        (b)[(i) + 2] = (unsigned char)((n) >> 8);     \
        (b)[(i) + 3] = (unsigned char)((n));          \
    } while(0)  

// SM3 循环左移  
#define ROTL(x,n) (((x) << (n)) | ((x) >> (32 - (n))))  

// 定义布尔函数  
#define FF0(x,y,z) ((x) ^ (y) ^ (z))  
#define FF1(x,y,z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))  
#define GG0(x,y,z) ((x) ^ (y) ^ (z))  
#define GG1(x,y,z) (((x) & (y)) | ((~(x)) & (z)))  

// 非线性变换函数  
#define P0(x) ((x) ^ ROTL((x),9) ^ ROTL((x),17))  
#define P1(x) ((x) ^ ROTL((x),15) ^ ROTL((x),23))  

// SM3 常量函数 Tj  
#define Tj(j) ((j) <= 15 ? 0x79CC4519 : 0x7A879D8A)  

// 填充常量  
static const unsigned char sm3_padding[64] = {  
    0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 后续填充为0 */  
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* ...重复...*/  
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* ...共64个...*/  
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
    0x00, 0x00, 0x00, 0x00  
};  

// SM3 初始化  
void sm3_starts(sm3_context *ctx) {  
    ctx->total[0] = 0;  
    ctx->total[1] = 0;  
    memcpy(ctx->state, SM3_IV, sizeof(SM3_IV));  
}  

// SM3 处理一个64字节的数据块  
static void sm3_process(sm3_context *ctx, const unsigned char data[64]) {  
    uint32_t W[68], W1[64], A, B, C, D, E, F, G, H;  
    uint32_t SS1, SS2, TT1, TT2;  
    int j;  

    // 消息扩展  
    for (j = 0; j < 16; j++) {  
        GET_ULONG_BE(W[j], data, j * 4);  
    }  
    for (j = 16; j < 68; j++) {  
        W[j] = P1(W[j - 16] ^ W[j - 9] ^ ROTL(W[j - 3], 15)) ^ ROTL(W[j - 13], 7) ^ W[j - 6];  
    }  
    for (j = 0; j < 64; j++) {  
        W1[j] = W[j] ^ W[j + 4];  
    }  

    // 初始化寄存器  
    A = ctx->state[0];  
    B = ctx->state[1];  
    C = ctx->state[2];  
    D = ctx->state[3];  
    E = ctx->state[4];  
    F = ctx->state[5];  
    G = ctx->state[6];  
    H = ctx->state[7];  

    // 压缩函数  
    for (j = 0; j < 64; j++) {  
        SS1 = ROTL((ROTL(A, 12) + E + ROTL(Tj(j), j % 32)), 7);  
        SS2 = SS1 ^ ROTL(A, 12);  
        TT1 = (j <= 15 ? FF0(A, B, C) : FF1(A, B, C)) + D + SS2 + W1[j];  
        TT2 = (j <= 15 ? GG0(E, F, G) : GG1(E, F, G)) + H + SS1 + W[j];  
        D = C;  
        C = ROTL(B, 9);  
        B = A;  
        A = TT1;  
        H = G;  
        G = ROTL(F, 19);  
        F = E;  
        E = P0(TT2);  
    }  

    // 更新状态  
    ctx->state[0] ^= A;  
    ctx->state[1] ^= B;  
    ctx->state[2] ^= C;  
    ctx->state[3] ^= D;  
    ctx->state[4] ^= E;  
    ctx->state[5] ^= F;  
    ctx->state[6] ^= G;  
    ctx->state[7] ^= H;  
}  

// SM3 更新函数  
void sm3_update(sm3_context *ctx, const unsigned char *input, int ilen) {  
    int fill;  
    uint32_t left;  

    if (ilen <= 0)  
        return;  

    left = ctx->total[0] & 0x3F;  
    fill = 64 - left;  

    ctx->total[0] += ilen;  
    if (ctx->total[0] < (uint32_t)ilen)  
        ctx->total[1]++;  

    if (left && ilen >= fill) {  
        memcpy(ctx->buffer + left, input, fill);  
        sm3_process(ctx, ctx->buffer);  
        input += fill;  
        ilen -= fill;  
        left = 0;  
    }  

    while (ilen >= 64) {  
        sm3_process(ctx, input);  
        input += 64;  
        ilen -= 64;  
    }  

    if (ilen > 0) {  
        memcpy(ctx->buffer + left, input, ilen);  
    }  
}  

// SM3 完成并输出哈希值  
void sm3_finish(sm3_context *ctx, unsigned char output[32]) {  
    unsigned long high, low;  
    unsigned long last, padn;  
    unsigned char msglen[8];  

    high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);  
    low = (ctx->total[0] << 3);  

    PUT_ULONG_BE(high, msglen, 0);  
    PUT_ULONG_BE(low, msglen, 4);  

    last = ctx->total[0] & 0x3F;  
    padn = (last < 56) ? (56 - last) : (120 - last);  

    sm3_update(ctx, sm3_padding, padn);  
    sm3_update(ctx, msglen, 8);  

    PUT_ULONG_BE(ctx->state[0], output, 0);  
    PUT_ULONG_BE(ctx->state[1], output, 4);  
    PUT_ULONG_BE(ctx->state[2], output, 8);  
    PUT_ULONG_BE(ctx->state[3], output, 12);  
    PUT_ULONG_BE(ctx->state[4], output, 16);  
    PUT_ULONG_BE(ctx->state[5], output, 20);  
    PUT_ULONG_BE(ctx->state[6], output, 24);  
    PUT_ULONG_BE(ctx->state[7], output, 28);  
}  

// 单次调用 SM3 算法  
void sm3(const unsigned char *input, int ilen, unsigned char output[32]) {  
    sm3_context ctx;  

    sm3_starts(&ctx);  
    sm3_update(&ctx, input, ilen);  
    sm3_finish(&ctx, output);  

    memset(&ctx, 0, sizeof(sm3_context)); // 清零上下文  
}  

// 打印缓冲区为十六进制  
void dumpbuf(const unsigned char *buf, int len) {  
    for (int i = 0; i < len; i++) {  
        printf("%02x", buf[i]);  
    }  
    printf("\n");  
}  

// 主函数,用于测试对"abc"的 SM3 哈希  
int main(void) {  
    const unsigned char data[] = "abcd";  
    unsigned char hash[32];  

    printf("消息:%s\nHash结果:\n", data);  
    sm3(data, strlen((const char*)data), hash);  
    dumpbuf(hash, 32);  

    return 0;  
}
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ cat sm31.c
// sm3.c: SM3 哈希实现并在 Linux 下运行  
#include <stdio.h>  
#include <stdint.h>  
#include <string.h>  
#include <stdlib.h>  

// SM3 初始向量  
const uint8_t IV[32] = {  
    0x73, 0x80, 0x16, 0x6F, 0x49, 0x14, 0xB2, 0xB9,  
    0x17, 0x24, 0x42, 0xD7, 0xDA, 0x8A, 0x06, 0x00,  
    0xA9, 0x6F, 0x30, 0xBC, 0x16, 0x31, 0x38, 0xAA,  
    0xE3, 0x8D, 0xEE, 0x4D, 0xB0, 0xFB, 0x0E, 0x4E  
};  

// 循环左移(32位)  
uint32_t ROTL(uint32_t x, int n) {  
    return (x << n) | (x >> (32 - n));  
}  

// 常量函数 Tj  
uint32_t Tj(int j) {  
    return (j <= 15) ? 0x79CC4519 : 0x7A879D8A;  
}  

// 布尔函数 FFj  
uint32_t FFj(int j, uint32_t X, uint32_t Y, uint32_t Z) {  
    return (j <= 15) ? (X ^ Y ^ Z) : ((X & Y) | (X & Z) | (Y & Z));  
}  

// 布尔函数 GGj  
uint32_t GGj(int j, uint32_t X, uint32_t Y, uint32_t Z) {  
    return (j <= 15) ? (X ^ Y ^ Z) : ((X & Y) | (~X & Z));  
}  

// 非线性变换函数 P0  
uint32_t P0(uint32_t X) {  
    return X ^ ROTL(X, 9) ^ ROTL(X, 17);  
}  

// 非线性变换函数 P1  
uint32_t P1(uint32_t X) {  
    return X ^ ROTL(X, 15) ^ ROTL(X, 23);  
}  

// 扩展函数 EB  
void EB(const uint8_t Bi[64], uint32_t W[68], uint32_t W1[64]) {  
    // 将 Bi 分为 W0~W15  
    for (int i = 0; i < 16; ++i) {  
        W[i] = (Bi[i * 4] << 24) | (Bi[i * 4 + 1] << 16) |  
               (Bi[i * 4 + 2] << 8) | (Bi[i * 4 + 3]);  
    }  

    // 扩展 W16~W67  
    for (int j = 16; j <= 67; ++j) {  
        W[j] = P1(W[j - 16] ^ W[j - 9] ^ ROTL(W[j - 3], 15)) ^  
               ROTL(W[j - 13], 7) ^ W[j - 6];  
    }  

    // 计算 W1  
    for (int j = 0; j < 64; ++j) {  
        W1[j] = W[j] ^ W[j + 4];  
    }  
}  

// 压缩函数 CF  
void CF(const uint8_t Vi[32], const uint8_t Bi[64], uint8_t Vi1[32]) {  
    uint32_t W[68] = {0};  
    uint32_t W1[64] = {0};  

    EB(Bi, W, W1);  

    // 将 Vi 分为 A, B, C, D, E, F, G, H  
    uint32_t R[8];  
    for (int i = 0; i < 8; ++i) {  
        R[i] = (Vi[i * 4] << 24) | (Vi[i * 4 + 1] << 16) |  
               (Vi[i * 4 + 2] << 8) | (Vi[i * 4 + 3]);  
    }  

    uint32_t A = R[0], B_val = R[1], C = R[2], D = R[3];  
    uint32_t E = R[4], F = R[5], G = R[6], H = R[7];  
    uint32_t SS1, SS2, TT1, TT2;  

    for (int j = 0; j < 64; ++j) {  
        SS1 = ROTL((ROTL(A, 12) + E + ROTL(Tj(j), j % 32)), 7);  
        SS2 = SS1 ^ ROTL(A, 12);  
        TT1 = FFj(j, A, B_val, C) + D + SS2 + W1[j];  
        TT2 = GGj(j, E, F, G) + H + SS1 + W[j];  
        D = C;  
        C = ROTL(B_val, 9);  
        B_val = A;  
        A = TT1;  
        H = G;  
        G = ROTL(F, 19);  
        F = E;  
        E = P0(TT2);  
    }  

    // 将 ABCDEFGH 重新打包  
    R[0] = A; R[1] = B_val; R[2] = C; R[3] = D;  
    R[4] = E; R[5] = F; R[6] = G; R[7] = H;  

    uint8_t ABCDEFGH[32];  
    for (int i = 0; i < 8; ++i) {  
        ABCDEFGH[i * 4]     = (R[i] >> 24) & 0xFF;  
        ABCDEFGH[i * 4 + 1] = (R[i] >> 16) & 0xFF;  
        ABCDEFGH[i * 4 + 2] = (R[i] >> 8) & 0xFF;  
        ABCDEFGH[i * 4 + 3] = R[i] & 0xFF;  
    }  

    // Vi1 = ABCDEFGH ^ Vi  
    for (int i = 0; i < 32; ++i) {  
        Vi1[i] = ABCDEFGH[i] ^ Vi[i];  
    }  
}  

// 参数 m 是原始数据,ml 是数据长度(字节数),r 是输出参数,存放 hash 结果  
void SM3Hash(const uint8_t* m, int ml, uint8_t r[32]) {  
    uint64_t l = (uint64_t)ml * 8;  
    int k = (448 - (l + 1)) % 512;  
    if (k < 0) {  
        k += 512;  
    }  

    int total_bits = l + 1 + k + 64;  
    int n = total_bits / 512;  

    int m1l = n * 512 / 8; // 填充后的长度,512 位的倍数  
    uint8_t* m1 = (uint8_t*)calloc(m1l, sizeof(uint8_t));  
    if (m1 == NULL) {  
        fprintf(stderr, "Memory allocation failed.\n");  
        exit(1);  
    }  
    memcpy(m1, m, ml);  

    m1[ml] = 0x80; // 消息后补 1(10000000)  

    // 添加长度 l 的 64 位大端表示  
    for (int i = 0; i < 8; ++i) {  
        m1[m1l - 1 - i] = (l >> (i * 8)) & 0xFF;  
    }  

    // 将填充后的消息 m′ 按 512 比特进行分组  
    const int BLOCK_SIZE = 64; // 512 位 / 8 = 64 字节  
    uint8_t V[32];  
    memcpy(V, IV, 32);  

    for (int i = 0; i < n; ++i) {  
        CF(V, m1 + i * BLOCK_SIZE, V);  
    }  

    memcpy(r, V, 32);  

    free(m1);  
}  

// 打印缓冲区  
void dumpbuf(const uint8_t* buf, int len) {  
    printf("len=%d\n", len);  
    for (int i = 0; i < len; i++) {  
        printf("%02x ", buf[i]);  
        if ((i + 1) % 16 == 0)  
            putchar('\n');  
    }  
    if (len % 16 != 0)  
        putchar('\n');  
}  

// 主函数  
int main(void) {  
    const uint8_t data[] = "abc";  
    uint8_t r[32];  
    printf("消息:%s\nHash结果:\n", data);  
    SM3Hash(data, strlen((const char*)data), r);  
    dumpbuf(r, 32);  
    return 0;  
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ git add sm33.c sm31.c sm31 sm33
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ git commit -m "sm3 jiao cai dai ma yan zheng"
[master c533a62] sm3 jiao cai dai ma yan zheng
 2 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100755 ch03/sm3/sm31
 create mode 100755 ch03/sm3/sm33
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ git log
commit c533a62670c7dbd5dd8b2bbf7461b5d51458f68e (HEAD -> master)
Author: fengtairui <1978274655@qq.com>
Date:   Sun Nov 3 10:17:16 2024 +0800

    sm3 jiao cai dai ma yan zheng

命令行验证

fengtairui@fengtairui-virtual-machine:~$ echo -n "abcd" | gmssl sm3
82ec580fe6d36ae4f81cae3c73f4a5b3b5a09c943172dc9053c69fd8e18dca1e
fengtairui@fengtairui-virtual-machine:~$ echo -n "abc" | gmssl sm3
66c7f0f462eeedd9d1f2d46bdc10e4e24167c4875cf2f7a2297da02b8f4ba8e0

SM4

源代码运行

fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ tree
.
├── Makefile
├── sm4.c
├── sm4.h
└── test.c

1 directory, 4 files
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ make
gcc   -Wall -g   -c sm4.c  
gcc   -Wall -g   -c test.c  
gcc   -Wall -g   -o testsm416 sm4.o test.o    
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ ./testsm416
明文 (十六进制): 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 
密文 (十六进制): 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46 
解密后的明文 (十六进制): 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 
sm4(16 Bytes ok!)
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ cat Makefile
# 定义编译器  
CC = gcc  

# 编译选项  
CFLAGS = -Wall -g  

# 目标可执行文件的名称  
TARGET = testsm416 

# 源文件  
SRCS = sm4.c test.c  

# 头文件  
HEADERS = sm4.h  

# 生成的对象文件  
OBJS = sm4.o test.o  

# 默认目标  
all: $(TARGET)  

# 链接生成可执行文件  
$(TARGET): $(OBJS)  
	$(CC) $(CFLAGS) -o $@ $(OBJS)  

# 编译 sm4.o  
sm4.o: sm4.c sm4.h  
	$(CC) $(CFLAGS) -c sm4.c  

# 编译 test.o  
test.o: test.c sm4.h  
	$(CC) $(CFLAGS) -c test.c  

# 清理生成的文件  
clean:  
	rm -f $(OBJS) $(TARGET)
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ cat test.c
#include "sm4.h"

int main()
{
	SM4_SelfCheck();
}
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ cat sm4.c
#include "sm4.h"
#include <stdio.h>

#define SM4_Rotl32(buf, n) (((buf)<<n)|((buf)>>(32-n)))



unsigned int SM4_CK[32] = { 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279 };


unsigned int SM4_FK[4] = { 0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC };

unsigned char SM4_Sbox[256] =
{ 0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05,
0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99,
0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62,
0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6,
0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8,
0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35,
0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87,
0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e,
0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1,
0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3,
0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f,
0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51,
0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8,
0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0,
0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84,
0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48 };



void SM4_KeySchedule(unsigned char MK[], unsigned int rk[])
{
	unsigned int tmp, buf, K[36];
	int i;
	for (i = 0; i < 4; i++)
	{
		K[i] = SM4_FK[i] ^ ((MK[4 * i] << 24) | (MK[4 * i + 1] << 16)
			| (MK[4 * i + 2] << 8) | (MK[4 * i + 3]));
	}
	for (i = 0; i < 32; i++)
	{
		tmp = K[i + 1] ^ K[i + 2] ^ K[i + 3] ^ SM4_CK[i];
		//nonlinear operation
		buf = (SM4_Sbox[(tmp >> 24) & 0xFF]) << 24
			| (SM4_Sbox[(tmp >> 16) & 0xFF]) << 16
			| (SM4_Sbox[(tmp >> 8) & 0xFF]) << 8
			| (SM4_Sbox[tmp & 0xFF]);
		//linear operation
		K[i + 4] = K[i] ^ ((buf) ^ (SM4_Rotl32((buf), 13)) ^ (SM4_Rotl32((buf), 23)));
		rk[i] = K[i + 4];
	}
}


void SM4_Encrypt(unsigned char MK[], unsigned char PlainText[], unsigned char CipherText[])
{
	unsigned int rk[32], X[36], tmp, buf;
	int i, j;
	SM4_KeySchedule(MK, rk);
	for (j = 0; j < 4; j++)
	{
		X[j] = (PlainText[j * 4] << 24) | (PlainText[j * 4 + 1] << 16)
			| (PlainText[j * 4 + 2] << 8) | (PlainText[j * 4 + 3]);
	}
	for (i = 0; i < 32; i++)
	{
		tmp = X[i + 1] ^ X[i + 2] ^ X[i + 3] ^ rk[i];
		//nonlinear operation
		buf = (SM4_Sbox[(tmp >> 24) & 0xFF]) << 24
			| (SM4_Sbox[(tmp >> 16) & 0xFF]) << 16
			| (SM4_Sbox[(tmp >> 8) & 0xFF]) << 8
			| (SM4_Sbox[tmp & 0xFF]);
		//linear operation
		X[i + 4] = X[i] ^ (buf^SM4_Rotl32((buf), 2) ^ SM4_Rotl32((buf), 10)
			^ SM4_Rotl32((buf), 18) ^ SM4_Rotl32((buf), 24));
	}
	for (j = 0; j < 4; j++)
	{
		CipherText[4 * j] = (X[35 - j] >> 24) & 0xFF;
		CipherText[4 * j + 1] = (X[35 - j] >> 16) & 0xFF;
		CipherText[4 * j + 2] = (X[35 - j] >> 8) & 0xFF;
		CipherText[4 * j + 3] = (X[35 - j]) & 0xFF;
	}
}

void SM4_Decrypt(unsigned char MK[], unsigned char CipherText[], unsigned char PlainText[])
{
	unsigned int rk[32], X[36], tmp, buf;
	int i, j;
	SM4_KeySchedule(MK, rk);
	for (j = 0; j < 4; j++)
	{
		X[j] = (CipherText[j * 4] << 24) | (CipherText[j * 4 + 1] << 16) |
			(CipherText[j * 4 + 2] << 8) | (CipherText[j * 4 + 3]);
	}
	for (i = 0; i < 32; i++)
	{
		tmp = X[i + 1] ^ X[i + 2] ^ X[i + 3] ^ rk[31 - i];
		//nonlinear operation
		buf = (SM4_Sbox[(tmp >> 24) & 0xFF]) << 24
			| (SM4_Sbox[(tmp >> 16) & 0xFF]) << 16
			| (SM4_Sbox[(tmp >> 8) & 0xFF]) << 8
			| (SM4_Sbox[tmp & 0xFF]);
		//linear operation
		X[i + 4] = X[i] ^ (buf^SM4_Rotl32((buf), 2) ^ SM4_Rotl32((buf), 10)
			^ SM4_Rotl32((buf), 18) ^ SM4_Rotl32((buf), 24));
	}
	for (j = 0; j < 4; j++)
	{
		PlainText[4 * j] = (X[35 - j] >> 24) & 0xFF;
		PlainText[4 * j + 1] = (X[35 - j] >> 16) & 0xFF;
		PlainText[4 * j + 2] = (X[35 - j] >> 8) & 0xFF;
		PlainText[4 * j + 3] = (X[35 - j]) & 0xFF;
	}
}

int SM4_SelfCheck()
{
	int i;
	//Standard data
	unsigned char key[16] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 };
	unsigned char plain[16] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 };
	unsigned char cipher[16] = { 0x68,0x1e,0xdf,0x34,0xd2,0x06,0x96,0x5e,0x86,0xb3,0xe9,0x4f,0x53,0x6e,0x42,0x46 };
	unsigned char En_output[16];
	unsigned char De_output[16];
	SM4_Encrypt(key, plain, En_output);
	SM4_Decrypt(key, cipher, De_output);

	printf("明文 (十六进制): ");  
	for(int i = 0; i < 16; i++) {  
		printf("%02X ", plain[i]);  
	}  
	printf("\n");  

	printf("密文 (十六进制): ");  
	for(int i = 0; i < 16; i++) {  
		printf("%02X ", En_output[i]);  
	}  
	printf("\n");  

	printf("解密后的明文 (十六进制): ");  
	for(int i = 0; i < 16; i++) {  
		printf("%02X ", De_output[i]);  
	}  
	printf("\n");  
	for (i = 0; i < 16; i++)
	{
		if ((En_output[i] != cipher[i]) | (De_output[i] != plain[i]))
		{
			printf("Self-check error");
			return 1;
		}
	}

	printf("sm4(16 Bytes ok!)\n\n");
	return 0;
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ git add Makefile  sm4.c  sm4.h  sm4.o  test.c  test.o  testsm416
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ git commit -m "sm4 jiao cai dai ma yan zheng"
[master 5fe03c1] sm4 jiao cai dai ma yan zheng
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100755 ch03/sm4/sm416/testsm416
fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ git log
commit 5fe03c1f740b2d7106034565fcd4ac58433387ed (HEAD -> master)
Author: fengtairui <1978274655@qq.com>
Date:   Sun Nov 3 10:22:21 2024 +0800

    sm4 jiao cai dai ma yan zheng

命令行验证

fengtairui@fengtairui-virtual-machine:~$ echo -n -e "\x01\x23\x45\x67\x89\xAB\xCD\xEF\xFE\xDC\xBA\x98\x76\x54\x32\x10" > plain.bin
fengtairui@fengtairui-virtual-machine:~$ cat plain.bin
#Eg�1�7�1�7�1�7�1�7�1�7�1�4�1�7vT2
fengtairui@fengtairui-virtual-machine:~$ gmssl rand -outlen 16 -out key.bin
fengtairui@fengtairui-virtual-machine:~$ od -tx1 key.bin
0000000 0a 16 d6 8b c4 9c 8b 0e e8 b5 97 40 15 34 20 95
0000020
fengtairui@fengtairui-virtual-machine:~$ echo -n -e "\x01\x23\x45\x67\x89\xAB\xCD\xEF\xFE\xDC\xBA\x98\x76\x54\x32\x10" | gmssl sm4_ecb -encrypt -key $(xxd -p key.bin) -out encrypted_data.ecb
fengtairui@fengtairui-virtual-machine:~$ cat encrypted_data.ecb
�1717Y�1717VN
       �17&�17l
fengtairui@fengtairui-virtual-machine:~$ gmssl sm4_ecb -decrypt -in encrypted_data.ecb -out decrypted_data.bin -key $(xxd -p key.bin) 
fengtairui@fengtairui-virtual-machine:~$ cat plain.bin
#Eg�1�7�1�7�1�7�1�7�1�7�1�4�1�7vT2
fengtairui@fengtairui-virtual-machine:~$ cat decrypted_data.bin
#Eg�1�7�1�7�1�7�1�7�1�7�1�4�1�7vT2

2.在密标委网站http://www.gmbz.org.cn/main/bzlb.html查找SM2,SM3,SM4相关标准,分析代码实现与标准的对应关系。(10分)

SM2

加密解密

SM2是中国国家密码管理局发布的一种公钥密码标准,基于椭圆曲线密码体系(ECC)。它主要用于加密、解密、数字签名和验证等功能。SM2算法的核心是椭圆曲线上的点运算,包括点的加法和标量乘法。以下是SM2加密解密代码实现与SM2标准之间的对应关系:

  1. 密钥生成(SM2_KeyGeneration)

    • 标准中描述了如何从私钥生成公钥。
    • 代码中的SM2_KeyGeneration函数实现了这一过程,它接受私钥作为输入,并计算对应的公钥。
  2. 加密(SM2_Encrypt)

    • 标准中描述了SM2加密算法,包括随机数的生成、点的标量乘法、密钥派生函数(KDF)等。
    • 代码中的SM2_Encrypt函数实现了这一过程,它接受随机数、公钥和明文作为输入,并生成密文。
  3. 解密(SM2_Decrypt)

    • 标准中描述了SM2解密算法,包括点的标量乘法、密钥派生函数(KDF)等。
    • 代码中的SM2_Decrypt函数实现了这一过程,它接受私钥和密文作为输入,并恢复出明文。
  4. 密钥派生函数(SM3_KDF)

    • 标准中描述了如何使用SM3哈希函数来生成密钥。
    • 代码中的SM3_KDF函数实现了这一过程,它接受输入数据和密钥长度作为输入,并生成密钥。
  5. 椭圆曲线点的验证(Test_Point 和 Test_PubKey)

    • 标准中描述了如何验证椭圆曲线上的点是否有效。
    • 代码中的Test_PointTest_PubKey函数实现了这一过程,它们检查给定的点是否在椭圆曲线上。
  6. 自测试(SM2_ENC_SelfTest)

    • 标准中包含了自测试的步骤,以确保算法实现的正确性。
    • 代码中的SM2_ENC_SelfTest函数实现了这一过程,它通过加密和解密测试数据来验证算法的正确性。
  7. 初始化SM2曲线参数(SM2_Init)

    • 标准中描述了如何初始化SM2算法所需的椭圆曲线参数。
    • 代码中的SM2_Init函数实现了这一过程,它设置了椭圆曲线的参数。

这些函数和过程是SM2算法的核心组成部分,它们在代码中的实现与SM2标准的描述相对应。

签名验签

SM2是中国国家密码管理局发布的公钥密码标准,主要用于椭圆曲线加密和签名。SM2算法包括密钥生成、加密、解密、签名和验证等操作。概述SM2签名验签代码实现与SM2标准之间的对应关系:

  1. SM2初始化(SM2_Init)

    • 标准中提到初始化SM2算法时需要设置曲线参数,包括p、a、b、Gx、Gy、n等。
    • 代码中的SM2_Init函数正是执行这一步骤,它使用MIRACL库来初始化这些参数,并检查点G的阶是否为n。
  2. 密钥生成(SM2_KeyGeneration)

    • 标准中描述了如何从私钥d计算公钥(d*G),其中G是曲线上的基点。
    • 代码中的SM2_KeyGeneration函数实现了这一过程,它接受私钥作为输入,并计算对应的公钥。
  3. 签名生成(SM2_Sign)

    • 标准中详细描述了SM2签名算法,包括消息摘要的计算、随机数k的选择、签名值R和S的计算等。
    • 代码中的SM2_Sign函数实现了这一过程,它接受消息、随机数、私钥等作为输入,并生成签名值R和S。
  4. 签名验证(SM2_Verify)

    • 标准中描述了如何验证签名,包括计算R和S的有效性,以及使用公钥验证签名。
    • 代码中的SM2_Verify函数实现了这一过程,它接受消息、公钥、签名值R和S作为输入,并验证签名的有效性。
  5. 自检测试(SM2_SelfCheck)

    • 标准中提到了算法的自检测试,以确保算法实现的正确性。
    • 代码中的SM2_SelfCheck函数实现了这一过程,它通过执行密钥生成、签名和验证来测试算法的完整性。
  6. 辅助函数

    • 代码中还包含了一些辅助函数,如Test_PointTest_PubKeyTest_ZeroTest_nTest_Range等,这些函数用于在签名和验证过程中检查各种条件是否满足。

这些函数和过程是SM2算法的核心组成部分,它们在代码中的实现与SM2标准的描述相对应。

SM3

SM3是中国国家密码管理局发布的密码散列函数标准,类似于国际上的SHA-256算法。SM3算法的主要步骤包括消息填充、消息扩展、压缩函数和循环处理消息块。以下是附件中的代码实现与SM3标准之间的对应关系:

  1. 初始化向量(IV)

    • 标准中定义了SM3算法的初始向量。
    • 附件中的代码定义了IV数组,与标准中的初始向量相对应。
  2. 循环左移(ROTL)

    • 标准中描述了循环左移操作。
    • 附件中的代码实现了ROTL函数,用于执行循环左移操作。
  3. 常量函数Tj

    • 标准中定义了SM3算法中的常量函数Tj。
    • 附件中的代码实现了Tj函数,根据标准生成相应的常量。
  4. 布尔函数FFj和GGj

    • 标准中定义了SM3算法中的布尔函数FF和GG。
    • 附件中的代码实现了FFjGGj函数,用于执行布尔函数操作。
  5. 非线性变换函数P0和P1

    • 标准中定义了SM3算法中的非线性变换函数P0和P1。
    • 附件中的代码实现了P0P1函数,用于执行非线性变换。
  6. 扩展函数EB

    • 标准中描述了消息扩展的过程。
    • 附件中的代码实现了EB函数,用于将输入消息扩展为W和W1数组。
  7. 压缩函数CF

    • 标准中描述了压缩函数的执行过程。
    • 附件中的代码实现了CF函数,用于执行压缩函数,更新哈希状态。
  8. 哈希计算函数SM3Hash

    • 标准中描述了整个哈希计算的流程。
    • 附件中的代码实现了SM3Hash函数,用于执行整个哈希计算过程,包括消息填充、消息扩展、压缩函数和循环处理消息块。
  9. 消息填充

    • 标准中描述了消息填充的方法。
    • 附件中的代码在SM3Hash函数中实现了消息填充,确保消息长度符合要求。
  10. 消息长度处理

    • 标准中描述了如何处理消息长度。
    • 附件中的代码在SM3Hash函数中添加了消息长度的处理。

这些函数和过程是SM3算法的核心组成部分,它们在代码中的实现与SM3标准的描述相对应。

SM4

SM4是中国国家密码管理局发布的对称加密标准,类似于国际上的AES算法。SM4算法的主要步骤包括密钥扩展、加密和解密过程。以下是附件中的代码实现与SM4标准之间的对应关系:

  1. 密钥扩展(SM4_KeySchedule)

    • 标准中描述了如何从原始密钥生成加密所需的轮密钥。
    • 附件中的代码实现了SM4_KeySchedule函数,用于生成轮密钥。
  2. 加密过程(SM4_Encrypt)

    • 标准中描述了加密过程,包括密钥白化、轮函数应用等。
    • 附件中的代码实现了SM4_Encrypt函数,用于执行加密过程。
  3. 解密过程(SM4_Decrypt)

    • 标准中描述了解密过程,包括逆密钥白化、逆轮函数应用等。
    • 附件中的代码实现了SM4_Decrypt函数,用于执行解密过程。
  4. S盒(SM4_Sbox)

    • 标准中定义了SM4算法使用的S盒。
    • 附件中的代码定义了SM4_Sbox数组,与标准中的S盒相对应。
  5. 轮常量(SM4_CK)

    • 标准中定义了SM4算法使用的轮常量。
    • 附件中的代码定义了SM4_CK数组,与标准中的轮常量相对应。
  6. 密钥白化(SM4_FK)

    • 标准中描述了如何对密钥进行白化处理。
    • 附件中的代码定义了SM4_FK数组,用于密钥白化。
  7. 循环左移(SM4_Rotl32)

    • 标准中描述了循环左移操作。
    • 附件中的代码实现了SM4_Rotl32宏,用于执行循环左移操作。
  8. 自测试(SM4_SelfCheck)

    • 标准中包含了自测试的步骤,以确保算法实现的正确性。
    • 附件中的代码实现了SM4_SelfCheck函数,通过加密和解密测试数据来验证算法的正确性。

这些函数和过程是SM4算法的核心组成部分,它们在代码中的实现与SM4标准的描述相对应。

posted @   20221320冯泰瑞  阅读(4)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示