Numpy基础学习笔记2

3.数组处理数据

Numpy数组可以代替循环,进行矢量化的运算,通常会比纯python的方式快一两个数量级。

3.1 将条件逻辑表述为数组运算

np.where函数是x if condition else y的矢量化版本。

In [15]: yarr = np.array([2.1,2.2,2.3,2.4,2.5])

In [16]: cond = np.array([True,False,True,True,False])

In [17]: xarr = np.array([1.1,1.2,1.3,1.4,1.5])

In [18]: np.where(cond,xarr,yarr)  # 判断cond条件,真zarr,假yarr
Out[18]: array([ 1.1,  2.2,  1.3,  1.4,  2.5])

另一个例子,希望将一组随机数,正数替换为2,负数替换为-2

In [19]: arr = np.random.randn(4,4)

In [20]: arr
Out[20]:
array([[ 1.18242592,  0.34138367,  0.36648288,  0.87214939],
       [ 0.67129526,  0.2410077 ,  0.37928273, -0.43982009],
       [ 0.47559093, -0.050917  , -0.10229582,  1.58122926],
       [ 0.83486166, -1.27310522,  0.17164926,  0.77951888]])

In [21]: np.where(arr > 0,2,-2)
Out[21]:
array([[ 2,  2,  2,  2],
       [ 2,  2,  2, -2],
       [ 2, -2, -2,  2],
       [ 2, -2,  2,  2]])

In [22]: np.where(arr > 0,2,arr)  # 负数还是arr
Out[22]:
array([[ 2.        ,  2.        ,  2.        ,  2.        ],
      [ 2.        ,  2.        ,  2.        , -0.43982009],
      [ 2.        , -0.050917  , -0.10229582,  2.        ],
      [ 2.        , -1.27310522,  2.        ,  2.        ]])

3.2 数学和统计方法

这些方法一般可以作为实例方法调用,也可以当做Numpy函数使用。

In [23]: arr = np.random.randn(5,4)

In [24]: arr.mean()
Out[24]: -0.024836906150552153

In [25]: np.mean(arr)
Out[25]: -0.024836906150552153

基本数组统计方法如下:

In [26]: arr
Out[26]:
array([[-0.03065448,  0.91344557, -0.77812406, -1.608862  ],
       [ 1.58463814,  0.98126805,  1.06389757, -1.17451329],
       [ 1.48408281,  0.02386196, -0.80217916,  0.29413806],
       [ 0.11536984,  1.73736452,  0.93596778,  0.26898712],
       [-2.05527855,  0.49837502, -2.56571303, -1.38280997]])

In [27]: arr.sum()
Out[27]: -0.49673812301104303

In [28]: arr.sum(axis=0)
Out[28]: array([ 1.09815775,  4.15431511, -2.14615091, -3.60306008])

In [29]: arr.sum(axis=1)
Out[29]: array([-1.50419497,  2.45529046,  0.99990367,  3.05768925, -5.50542653]
)

In [30]: arr.mean()
Out[30]: -0.024836906150552153

In [31]: arr.mean(axis=1)
Out[31]: array([-0.37604874,  0.61382262,  0.24997592,  0.76442231, -1.37635663]
)

In [32]: arr.std()
Out[32]: 1.2223549632355621

In [33]: arr.var()
Out[33]: 1.4941516561466126

In [34]: arr.min()
Out[34]: -2.565713031578829

In [35]: arr.max()
Out[35]: 1.7373645152425918

In [36]: arr.argmin()
Out[36]: 18

In [37]: arr.cumsum()
Out[37]:
array([-0.03065448,  0.88279109,  0.10466703, -1.50419497,  0.08044316,
        1.06171121,  2.12560878,  0.95109549,  2.4351783 ,  2.45904026,
        1.6568611 ,  1.95099916,  2.066369  ,  3.80373352,  4.73970129,
        5.00868841,  2.95340986,  3.45178488,  0.88607184, -0.49673812])

In [38]: arr.cumprod()
Out[38]:
array([ -3.06544789e-02,  -2.80011979e-02,   2.17884059e-02,
        -3.50545383e-02,  -5.55487582e-02,  -5.45082216e-02,
        -5.79911645e-02,   6.81113935e-02,   1.01082948e-01,
         2.41203713e-03,  -1.93488591e-03,  -5.69123592e-04,
        -6.56596961e-05,  -1.14074826e-04,  -1.06770361e-04,
        -2.87198518e-05,   5.90272954e-05,   2.94177294e-05,
        -7.54774516e-05,   1.04370972e-04])

3.3 用于布尔型数组的方法

布尔值是True和False,同时也是1和0。我们可以使用sum来统计True值得计数。

In [39]: arr
Out[39]:
array([[-0.03065448,  0.91344557, -0.77812406, -1.608862  ],
       [ 1.58463814,  0.98126805,  1.06389757, -1.17451329],
       [ 1.48408281,  0.02386196, -0.80217916,  0.29413806],
       [ 0.11536984,  1.73736452,  0.93596778,  0.26898712],
       [-2.05527855,  0.49837502, -2.56571303, -1.38280997]])

In [40]: (arr>0).sum()
Out[40]: 12

In [41]: arr>0
Out[41]:
array([[False,  True, False, False],
       [ True,  True,  True, False],
       [ True,  True, False,  True],
       [ True,  True,  True,  True],
       [False,  True, False, False]], dtype=bool)

还有ang和all两个方法,可以用于布尔型数组,也可以用于非布尔型。在用于非布尔型数组时,所有非0元素都被当做True。

In [46]: bools = arr > 0   #将arr>0这个bool型数组赋值

In [47]: bools
Out[47]:
array([[False,  True, False, False],
       [ True,  True,  True, False],
       [ True,  True, False,  True],
       [ True,  True,  True,  True],
       [False,  True, False, False]], dtype=bool)

In [48]: bools.any()
Out[48]: True

In [49]: bools.all()
Out[49]: False

In [50]: arr.any()  #非0值将当成True处理。
Out[50]: True

3.4 排序

Numpy数组可以通过sort方法就地排序。

In [51]: arr
Out[51]:
array([[-0.03065448,  0.91344557, -0.77812406, -1.608862  ],
       [ 1.58463814,  0.98126805,  1.06389757, -1.17451329],
       [ 1.48408281,  0.02386196, -0.80217916,  0.29413806],
       [ 0.11536984,  1.73736452,  0.93596778,  0.26898712],
       [-2.05527855,  0.49837502, -2.56571303, -1.38280997]])

In [52]: arr.sort()

In [53]: arr
Out[53]:
array([[-1.608862  , -0.77812406, -0.03065448,  0.91344557],
       [-1.17451329,  0.98126805,  1.06389757,  1.58463814],
       [-0.80217916,  0.02386196,  0.29413806,  1.48408281],
       [ 0.11536984,  0.26898712,  0.93596778,  1.73736452],
       [-2.56571303, -2.05527855, -1.38280997,  0.49837502]])

In [54]: arr.sort(axis=0)

In [55]: arr
Out[55]:
array([[-2.56571303, -2.05527855, -1.38280997,  0.49837502],
       [-1.608862  , -0.77812406, -0.03065448,  0.91344557],
       [-1.17451329,  0.02386196,  0.29413806,  1.48408281],
       [-0.80217916,  0.26898712,  0.93596778,  1.58463814],
       [ 0.11536984,  0.98126805,  1.06389757,  1.73736452]])

In [56]: arr.sort(1)

In [57]: arr
Out[57]:
array([[-2.56571303, -2.05527855, -1.38280997,  0.49837502],
       [-1.608862  , -0.77812406, -0.03065448,  0.91344557],
       [-1.17451329,  0.02386196,  0.29413806,  1.48408281],
       [-0.80217916,  0.26898712,  0.93596778,  1.58463814],
       [ 0.11536984,  0.98126805,  1.06389757,  1.73736452]])

举个例子,求一个数组百分之5的分位数。

In [62]: arr = np.random.randn(1000)

In [63]: arr.sort()

In [64]: arr[int(0.05 * len(arr))]
Out[64]: -1.6307748333138019

In [67]: arr[50]
Out[67]: -1.6307748333138019

3.5 唯一化(去重)以及数组的集合运算

np.unique方法为数组去重,并排序。

In [68]: names = np.array(["Bob","Joe","Will","Bob","Will","Joe","Joe"])

In [69]: np.unique(names)
Out[69]:
array(['Bob', 'Joe', 'Will'],
      dtype='<U4')
# 该方法类似于纯python中的如下:
In [70]: sorted(set(names))
Out[70]: ['Bob', 'Joe', 'Will']

其他集合运算:

In [71]: x = np.arange(1,101)

In [72]: y = np.arange(51,151)

In [73]: x
Out[73]:
array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,
        14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,
        27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,
        40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50,  51,  52,
        53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  65,
        66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,
        79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,  91,
        92,  93,  94,  95,  96,  97,  98,  99, 100])

In [74]: y
Out[74]:
array([ 51,  52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,
        64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,
        77,  78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,
        90,  91,  92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102,
       103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
       116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
       129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
       142, 143, 144, 145, 146, 147, 148, 149, 150])

In [75]: np.intersect1d(x,y)
Out[75]:
array([ 51,  52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,
        64,  65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,
        77,  78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,
        90,  91,  92,  93,  94,  95,  96,  97,  98,  99, 100])

In [77]: np.union1d(x,y)
Out[77]:
array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,
        14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,
        27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,
        40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50,  51,  52,
        53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  65,
        66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,
        79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,  91,
        92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103, 104,
       105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
       118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
       131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
       144, 145, 146, 147, 148, 149, 150])

In [78]: np.in1d(x,y)
Out[78]:
array([False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,  True], dt
ype=bool)

In [79]: np.setdiff1d(x,y)
Out[79]:
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
       35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])

In [80]: np.setxor1d(x,y)
Out[80]:
array([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,
        14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,
        27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,
        40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50, 101, 102,
       103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
       116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
       129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
       142, 143, 144, 145, 146, 147, 148, 149, 150])

4.文件处理

Numpy可以读写文本数据或二进制数据。后续有pandas来处理文本,因此本部分简单介绍。

4.1 以二进制方式保存和读取numpy数组

单个数组,保存时会自动添加后缀名.npy

In [86]: arr = np.arange(10)

In [88]: np.save("some_array", arr)

In [90]: np.load("some_array.npy")
Out[90]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

多个数组,可以使用压缩方式存储,后缀名.npz

In [91]: arr
Out[91]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [92]: arr2 = np.arange(20)

In [93]: np.savez("array_archive.npz",a=arr,b=arr2)

In [94]: arch = np.load("array_archive.npz")

In [95]: arch
Out[95]: <numpy.lib.npyio.NpzFile at 0x7084f98>

In [96]: arch['b']
Out[96]:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19])

4.2 存取文本文件

使用np.savetxtnp.loadtxt两个方法来实现。后面会主要介绍pandas中的read_csv和read_table函数,这里不详细介绍。

In [99]: arr  = np.random.randn(5,5)

In [102]: np.savetxt("arr.txt",arr,delimiter=",")

In [103]: np.loadtxt("arr.txt",delimiter=",")
Out[103]:
array([[ 0.45439906, -0.11067033,  1.67561654,  0.14142381,  0.1016269 ],
       [-1.09070259,  0.41627682, -0.81896911, -0.14980666, -1.06391152],
       [-0.88333647,  0.28268258,  0.69605952,  0.36348569, -0.53223699],
       [-0.50561387, -0.65916355,  1.40181374,  1.17810701,  1.31155551],
       [ 0.060254  , -1.02915195, -0.59382843,  0.49100178, -0.9541697 ]])

In [104]: arr
Out[104]:
array([[ 0.45439906, -0.11067033,  1.67561654,  0.14142381,  0.1016269 ],
       [-1.09070259,  0.41627682, -0.81896911, -0.14980666, -1.06391152],
       [-0.88333647,  0.28268258,  0.69605952,  0.36348569, -0.53223699],
       [-0.50561387, -0.65916355,  1.40181374,  1.17810701,  1.31155551],
       [ 0.060254  , -1.02915195, -0.59382843,  0.49100178, -0.9541697 ]])

待续。。。

posted @ 2017-01-29 16:28  felo  阅读(532)  评论(0编辑  收藏  举报